Description

An infinitely long railway has a train consisting of n cars, numbered from 1 to n (the numbers of all the cars are distinct) and positioned in arbitrary order. David Blaine wants to sort the railway cars in the order of increasing numbers. In one move he can make one of the cars disappear from its place and teleport it either to the beginning of the train, or to the end of the train, at his desire. What is the minimum number of actions David Blaine needs to perform in order to sort the train?

Input

The first line of the input contains integer n (1 ≤ n ≤ 100 000) — the number of cars in the train.

The second line contains n integers pi (1 ≤ pi ≤ n, pi ≠ pj if i ≠ j) — the sequence of the numbers of the cars in the train.

Output

Print a single integer — the minimum number of actions needed to sort the railway cars.

Sample Input

5
4 1 2 5 3

Sample Output

2

Hint

In the first sample you need first to teleport the 4-th car, and then the 5-th car to the end of the train.

题解

首先容易注意到答案一定不会超过 $n$,因为我们只要按照大小顺序每个数都移动一次,整个序列就一定有序了,由以上结论还可以得每个数至多被移动一次。

由于操作是将数移动到序列首部和序列尾部,那么没有被移动的数会停留在序列中部,所以这些数一定是原序列的一个子序列,并且是有序序列的一个连续子段。最小化移动即是最大化不动,那么我们找到最长的这样的一个子序列就行了。

时间复杂度 $O(n)$ 。

 //It is made by Awson on 2017.10.17
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std;
const int N = ;
void read(int &x) {
char ch = getchar(); x = ;
while (ch < '' || ch > '') ch = getchar();
while (ch >= '' && ch <= '') x = (x<<)+(x<<)+ch-, ch = getchar();
} int n, ans, a;
int f[N+]; void work() {
read(n);
for (int i = ; i <= n; i++) {
read(a); f[a] = f[a-]+;
ans = Max(ans, f[a]);
}
printf("%d\n", n-ans);
}
int main() {
work();
return ;
}

[Codeforces 606C]Sorting Railway Cars的更多相关文章

  1. CodeForces 606C Sorting Railway Cars(最长连续上升子序列)

    Description An infinitely long railway has a train consisting of n cars, numbered from 1 to n (the n ...

  2. Codeforces 335C Sorting Railway Cars

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  3. codeforce 606C - Sorting Railway Cars

    题意:给你一串数,没个数只能往前提到首位,或则往后放末尾.问最少步骤使操作后的序列成上升序列. 思路:最长连续子序列. #include<iostream> #include<std ...

  4. CodeForces 605A Sorting Railway Cars 思维

    早起一水…… 题意看着和蓝桥杯B组的大题第二道貌似一个意思…… 不过还是有亮瞎双眼的超短代码…… 总的意思呢…… 就是最长增长子序列且增长差距为1的的…… 然后n-最大长度…… 这都怎么想的…… 希望 ...

  5. CodeForces 605A Sorting Railway Cars

    求一下最长数字连续上升的子序列长度,n-长度就是答案 O(n)可以出解,dp[i]=dp[i-1]+1,然后找到dp数组最大的值. #include<cstdio> #include< ...

  6. Codeforces 606-C:Sorting Railway Cars(LIS)

    C. Sorting Railway Cars time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  7. Codeforces Round #335 (Div. 2) C. Sorting Railway Cars 动态规划

    C. Sorting Railway Cars Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.codeforces.com/conte ...

  8. Codeforces Round #335 (Div. 2) C. Sorting Railway Cars 连续LIS

    C. Sorting Railway Cars   An infinitely long railway has a train consisting of n cars, numbered from ...

  9. Codeforces Round #335 (Div. 2) C. Sorting Railway Cars

    C. Sorting Railway Cars time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

随机推荐

  1. codeforces 830 B Cards Sorting

    B. Cards Sorting  http://codeforces.com/problemset/problem/830/B Vasily has a deck of cards consisti ...

  2. hp MSA50 5盘RAID5重建为4盘RAID5怎么恢复数据

    [用户单位] XX省电视台[数据恢复故障描述] 一台HP 服务器,挂接一台HP MSA50磁盘阵列,内接5块1TB硬盘,原先结构为RAID5. 使用一段时间后,其中一块硬盘掉线,因RAID5支持一块硬 ...

  3. NoSQL简介

    相信大家也多多少少了解过一些数据库,最常用的当属MySQL了,当然也这是关系型数据库的代表了 常见的关系型数据库有:MySQL.SQLServer.Oracle 而数据库也有另一个流派-----NoS ...

  4. MVC Form 表单 提交 集合 及 复杂对象

    public class Customer { public string FName{get;set;} public Address address{get;set;} } public clas ...

  5. Python内置函数(5)——pow

    英文文档: pow(x, y[, z]) Return x to the power y; if z is present, return x to the power y, modulo z (co ...

  6. Mego开发文档 - 数据注释建模

    数据注释建模 Mego框架使用一组约定来基于CLR类来构建模型.您可以指定其他配置来补充或覆盖通过约定发现的内容. 在 Mego 中所有的数据对象必须要有主键.这里需要声明与EF不同的是框架只支持数据 ...

  7. http缓存浅谈

    我们在访问百度首页的时候,会发现不管怎么刷新页面,静态资源基本都是返回 200(from cache): 随便点开一个静态资源是酱的: 哎哟有Response报头数据呢,看来服务器也正常返回了etag ...

  8. apollo1.7.1初探(二)使用apollo订阅主题,发布主题消息

    一.MQTT协议配置 为了使用MQTT协议,首先使用MQTT3.1协议的客户端连接到Apollo正在监听端口.Apollo会做协议检测,而且自动识别MQTT连接,而且将连接作为MQTT协议处理. 你不 ...

  9. python利用文件对话框获取文件路径

    一.单文件 python3: import tkinter as tk from tkinter import filedialog root = tk.Tk() root.withdraw() fi ...

  10. Python模块 - os , sys.shutil

    os 模块是与操作系统交互的一个接口 os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径 os.chdir("dirname") 改变当前脚本工作目录: ...