Given an unsorted array of integers, find the number of longest increasing subsequence.

Example 1:

Input: [1,3,5,4,7]
Output: 2
Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].

Example 2:

Input: [2,2,2,2,2]
Output: 5
Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.

Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.

这道题给了我们一个数组,让求最长递增序列的个数,题目中的两个例子也很好的说明了问题。那么对于这种求极值的问题,直觉告诉我们应该要使用动态规划 Dynamic Programming 来做。其实这道题在设计 DP 数组的时候有个坑,如果将 dp[i] 定义为到i位置的最长子序列的个数的话,则递推公式不好找。但是如果将 dp[i] 定义为以 nums[i] 为结尾的递推序列的个数的话,再配上这些递推序列的长度,将会比较容易的发现递推关系。这里用 len[i] 表示以 nums[i] 为结尾的递推序列的长度,用 cnt[i] 表示以 nums[i] 为结尾的递推序列的个数,初始化都赋值为1,只要有数字,那么至少都是1。然后遍历数组,对于每个遍历到的数字 nums[i],再遍历其之前的所有数字 nums[j],当 nums[i] 小于等于 nums[j] 时,不做任何处理,因为不是递增序列。反之,则判断 len[i] 和 len[j] 的关系,如果 len[i] 等于 len[j] + 1,说明 nums[i] 这个数字可以加在以 nums[j] 结尾的递增序列后面,并且以 nums[j] 结尾的递增序列个数可以直接加到以 nums[i] 结尾的递增序列个数上。如果 len[i] 小于 len[j] + 1,说明找到了一条长度更长的递增序列,那么此时将 len[i] 更新为 len[j]+1,并且原本的递增序列都不能用了,直接用 cnt[j] 来代替。在更新完 len[i] 和 cnt[i] 之后,要更新 mx 和结果 res,如果 mx 等于 len[i],则把 cnt[i] 加到结果 res 之上;如果 mx 小于 len[i],则更新 mx 为 len[i],更新结果 res 为 cnt[i],参见代码如下:

解法一:

class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int res = , mx = , n = nums.size();
vector<int> len(n, ), cnt(n, );
for (int i = ; i < n; ++i) {
for (int j = ; j < i; ++j) {
if (nums[i] <= nums[j]) continue;
if (len[i] == len[j] + ) cnt[i] += cnt[j];
else if (len[i] < len[j] + ) {
len[i] = len[j] + ;
cnt[i] = cnt[j];
}
}
if (mx == len[i]) res += cnt[i];
else if (mx < len[i]) {
mx = len[i];
res = cnt[i];
}
}
return res;
}
};

下面这种方法跟上面的解法基本一样,就是把更新结果 res 放在了遍历完数组之后,我们利用 mx 来找到所有的 cnt[i],累加到结果 res 上,参见代码如下:

解法二:

class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int res = , mx = , n = nums.size();
vector<int> len(n, ), cnt(n, );
for (int i = ; i < n; ++i) {
for (int j = ; j < i; ++j) {
if (nums[i] <= nums[j]) continue;
if (len[i] == len[j] + ) cnt[i] += cnt[j];
else if (len[i] < len[j] + ) {
len[i] = len[j] + ;
cnt[i] = cnt[j];
}
}
mx = max(mx, len[i]);
}
for (int i = ; i < n; ++i) {
if (mx == len[i]) res += cnt[i];
}
return res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/673

类似题目:

Longest Increasing Subsequence

Longest Continuous Increasing Subsequence

参考资料:

https://leetcode.com/problems/number-of-longest-increasing-subsequence/

https://leetcode.com/problems/number-of-longest-increasing-subsequence/discuss/107318/C%2B%2B-DP-with-explanation-O(n2)

https://leetcode.com/problems/number-of-longest-increasing-subsequence/discuss/107293/JavaC%2B%2B-Simple-dp-solution-with-explanation

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数的更多相关文章

  1. [LeetCode] 673. Number of Longest Increasing Subsequence 最长递增序列的个数

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

  2. 673. Number of Longest Increasing Subsequence最长递增子序列的数量

    [抄题]: Given an unsorted array of integers, find the number of longest increasing subsequence. Exampl ...

  3. leetcode300. Longest Increasing Subsequence 最长递增子序列 、674. Longest Continuous Increasing Subsequence

    Longest Increasing Subsequence 最长递增子序列 子序列不是数组中连续的数. dp表达的意思是以i结尾的最长子序列,而不是前i个数字的最长子序列. 初始化是dp所有的都为1 ...

  4. [LeetCode] Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  5. [LeetCode] 300. Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  6. LeetCode Number of Longest Increasing Subsequence

    原题链接在这里:https://leetcode.com/problems/number-of-longest-increasing-subsequence/description/ 题目: Give ...

  7. [leetcode]300. Longest Increasing Subsequence最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  8. [LintCode] Longest Increasing Subsequence 最长递增子序列

    Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...

  9. POJ 2533 Longest Ordered Subsequence 最长递增序列

      Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequenc ...

随机推荐

  1. iOS之内存管理(ARC)

    iOS的内存管理,相信大家都不陌生,之前是使用的MRC,由开发人员手动来管理内存,后来使用了ARC,来由系统管理内存.本文主要讲讲Autorelease,Core Foundation对象在内存管理方 ...

  2. mysql新手入门随笔3

    #求最高工资的员工信息 SELECT * FROM emp WHERE sal = (SELECT max(sal) FROM emp); #删除工资最低的员工信息 DELETE FROM emp W ...

  3. 1077. Kuchiguse (20)

    The Japanese language is notorious for its sentence ending particles. Personal preference of such pa ...

  4. Spring MVC核心技术

    目录 异常处理 类型转换器 数据验证 文件上传与下载 拦截器 异常处理 Spring MVC中, 系统的DAO, Service, Controller层出现异常, 均通过throw Exceptio ...

  5. JVM活学活用——优化springboot

    介绍 在SpringBoot的Web项目中,默认采用的是内置Tomcat,当然也可以配置支持内置的jetty,内置有什么好处呢? 1. 方便微服务部署. 2. 方便项目启动,不需要下载Tomcat或者 ...

  6. 第二次作业-关于Steam游戏平台的简单分析

    1.1 Steam平台的简单介绍 你选择的产品是? 如题,这次的作业我选择了Steam作为分析的对象. 为什么选择该产品作为分析? 我选择数字游戏贩售平台STEAM作为分析对象的原因有以下几点: 1. ...

  7. hibernate框架学习错误集锦-org.springframework.dao.InvalidDataAccessApiUsageException: Write operations are not allowed in read-only mode (FlushMode.MANUAL)

    最近学习ssh框架,总是出现这问题,后查证是没有开启事务. 如果采用注解方式,直接在业务层加@Transactional 并引入import org.springframework.transacti ...

  8. SciPy - 科学计算库(上)

    SciPy - 科学计算库(上) 一.实验说明 SciPy 库建立在 Numpy 库之上,提供了大量科学算法,主要包括这些主题: 特殊函数 (scipy.special) 积分 (scipy.inte ...

  9. 浅谈CPU三级缓存和缓存命中率

    CPU: CPU缓存(Cache Memory)是位于CPU与内存之间的临时存储器,它的容量比内存小的多但是交换速度却比内存要快得多.缓存的出现主要是 为了解决CPU运算速度与内存读写速度不匹配的矛盾 ...

  10. linux 50个常用命令

    1.ls命令 ls是list的缩写,常用命令为ls(显示出当前目录列表),ls -l(详细显示当前目录列表),ls -lh(人性化的详细显示当前目录列表),ls -a(显示出当前目录列表,包含隐藏文件 ...