[LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数
Given an unsorted array of integers, find the number of longest increasing subsequence.
Example 1:
Input: [1,3,5,4,7]
Output: 2
Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: [2,2,2,2,2]
Output: 5
Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.
Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.
这道题给了我们一个数组,让求最长递增序列的个数,题目中的两个例子也很好的说明了问题。那么对于这种求极值的问题,直觉告诉我们应该要使用动态规划 Dynamic Programming 来做。其实这道题在设计 DP 数组的时候有个坑,如果将 dp[i] 定义为到i位置的最长子序列的个数的话,则递推公式不好找。但是如果将 dp[i] 定义为以 nums[i] 为结尾的递推序列的个数的话,再配上这些递推序列的长度,将会比较容易的发现递推关系。这里用 len[i] 表示以 nums[i] 为结尾的递推序列的长度,用 cnt[i] 表示以 nums[i] 为结尾的递推序列的个数,初始化都赋值为1,只要有数字,那么至少都是1。然后遍历数组,对于每个遍历到的数字 nums[i],再遍历其之前的所有数字 nums[j],当 nums[i] 小于等于 nums[j] 时,不做任何处理,因为不是递增序列。反之,则判断 len[i] 和 len[j] 的关系,如果 len[i] 等于 len[j] + 1,说明 nums[i] 这个数字可以加在以 nums[j] 结尾的递增序列后面,并且以 nums[j] 结尾的递增序列个数可以直接加到以 nums[i] 结尾的递增序列个数上。如果 len[i] 小于 len[j] + 1,说明找到了一条长度更长的递增序列,那么此时将 len[i] 更新为 len[j]+1,并且原本的递增序列都不能用了,直接用 cnt[j] 来代替。在更新完 len[i] 和 cnt[i] 之后,要更新 mx 和结果 res,如果 mx 等于 len[i],则把 cnt[i] 加到结果 res 之上;如果 mx 小于 len[i],则更新 mx 为 len[i],更新结果 res 为 cnt[i],参见代码如下:
解法一:
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int res = , mx = , n = nums.size();
vector<int> len(n, ), cnt(n, );
for (int i = ; i < n; ++i) {
for (int j = ; j < i; ++j) {
if (nums[i] <= nums[j]) continue;
if (len[i] == len[j] + ) cnt[i] += cnt[j];
else if (len[i] < len[j] + ) {
len[i] = len[j] + ;
cnt[i] = cnt[j];
}
}
if (mx == len[i]) res += cnt[i];
else if (mx < len[i]) {
mx = len[i];
res = cnt[i];
}
}
return res;
}
};
下面这种方法跟上面的解法基本一样,就是把更新结果 res 放在了遍历完数组之后,我们利用 mx 来找到所有的 cnt[i],累加到结果 res 上,参见代码如下:
解法二:
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int res = , mx = , n = nums.size();
vector<int> len(n, ), cnt(n, );
for (int i = ; i < n; ++i) {
for (int j = ; j < i; ++j) {
if (nums[i] <= nums[j]) continue;
if (len[i] == len[j] + ) cnt[i] += cnt[j];
else if (len[i] < len[j] + ) {
len[i] = len[j] + ;
cnt[i] = cnt[j];
}
}
mx = max(mx, len[i]);
}
for (int i = ; i < n; ++i) {
if (mx == len[i]) res += cnt[i];
}
return res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/673
类似题目:
Longest Increasing Subsequence
Longest Continuous Increasing Subsequence
参考资料:
https://leetcode.com/problems/number-of-longest-increasing-subsequence/
[LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数的更多相关文章
- [LeetCode] 673. Number of Longest Increasing Subsequence 最长递增序列的个数
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- 673. Number of Longest Increasing Subsequence最长递增子序列的数量
[抄题]: Given an unsorted array of integers, find the number of longest increasing subsequence. Exampl ...
- leetcode300. Longest Increasing Subsequence 最长递增子序列 、674. Longest Continuous Increasing Subsequence
Longest Increasing Subsequence 最长递增子序列 子序列不是数组中连续的数. dp表达的意思是以i结尾的最长子序列,而不是前i个数字的最长子序列. 初始化是dp所有的都为1 ...
- [LeetCode] Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- [LeetCode] 300. Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...
- LeetCode Number of Longest Increasing Subsequence
原题链接在这里:https://leetcode.com/problems/number-of-longest-increasing-subsequence/description/ 题目: Give ...
- [leetcode]300. Longest Increasing Subsequence最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...
- [LintCode] Longest Increasing Subsequence 最长递增子序列
Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...
- POJ 2533 Longest Ordered Subsequence 最长递增序列
Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequenc ...
随机推荐
- vue/axios请求拦截
import axios from 'axios';import { Message } from 'element-ui';import Cookies from 'js-cookie';impor ...
- 【Spring源码深度解析学习系列】默认标签解析(三)
Spring的标签包括默认标签和自定义标签两种 默认标签的解析方法: ###DefaultBeanDefinitionDocumentReader.java### private void parse ...
- Active MQ 实战(一)
1.什么是JMS JMS即Java消息服务(Java Message Service)应用程序接口,是一个Java平台中关于面向消息中间件(MOM)的API,用于在两个应用程序之间,或分布式系统中发送 ...
- MySQL之集合函数与分组查询
这是分组查询用到的语句,也包括了排序以及常用的集合函数
- 20155306 2017-2018-1《信息安全系统设计》第二周课堂测试以及myod的实现
20155306 2017-2018-1<信息安全系统设计>第二周课堂测试以及myod的实现 第二周课堂测验: (注:前两项在课堂已提交,在此不做详解) 第一项: 每个.c一个文件,每个. ...
- C语言--第二周作业
****学习内容总结**** 1.Git和编辑器截图 2.MOOC截图 3.阅读<提问的智慧>感想 读完<提问的智慧>之后,我认为在提问时,要根据以下步骤: 谨慎明确的描述症状 ...
- servlet线程同步问题-代码实现同步(转)
从servlet的生命周期中,我们知道,当第一次访问某个servlet后,该servlet的实例就会常驻 内存,以后再次访问该servlet就会访问同一个servlet实例,这样就带来多个用户去访问一 ...
- SpaceVim - 让你的vim变得更加高效和强大
SpaceVim 中文手册 项 目 主 页: https://spacevim.org Github 地址 : https://github.com/SpaceVim/SpaceVim SpaceVi ...
- vue-router 组件实例被复用问题
最近在开发过程中遇到如下问题: 当前路由是这样的 http://127.0.0.1:3010/order?keywords=22 只改变keywords的值,路由不跳转 http://127.0.0. ...
- js前端对后台数据的获取,如果是汉字则需要添上引号
js前端对后台数据的获取,如果是汉字则需要添上引号