装箱问题(Bin Packing Problem)

装箱问题即搬家公司问题。一个搬家公司有无限多的箱子,每个箱子的承重上限为W,当搬家公司进入一个房间时,所有物品都必须被装入箱子,每个物品的重量为wi (i=1,...,m),规划装箱方式,使得使用的箱子最少。此文及所有本博客中的博文均为原创,本博客不转发他人博文,特此声明。

实例

一个海运公司有若干货轮, 一个货轮的最大载重量4000吨, 客户货物的重量是 1020T, 1930T, 3575T, 2861T, 4221T, 1541T, 2348T, and 1170T, 问如何分配货物可以使总计需求的货轮数量(航次) 最小。

建模

假设搬家公司带来n个箱子,且n个箱子足够装入所有物品。设0-1变量x[i][j]表示第j个物品是否被安排装入第i个箱子,0表示不装入,1表示装入。根据题意,任何物品必须被装入某个箱子中,于是有约束:

sum{i=1,...,n} x[i][j] = 1 | j=1,...,m            // (1)

如果箱子i有任何物品被装入,则说该箱子被打开,并设0-1变量y[i]表示箱子i是否被打开(0-表示不打开,1-表示打开)。显然目标是极小化打开箱子的数目,即:

min sum{i=1,...,n} y[i]                              //(2)

装入箱子的物品重量和不能超过该箱子的承重,即:

sum{j=1,...,m} x[i][j] <= W*y[i] | i=1,...,n   //(3)

上式表示当聚焦第i个箱子时,如果y[i]=0则任何x[i][j]都必须为0,亦即如果第i个箱子没有被打开,则没有物品可以装入该箱子。反之,如果y[i]=1,则装入该箱子的物品的重量和必须小于箱子的最大承重W。

综合(1)-(3), 装箱问题模型的核心部分如下:

//-------------------------------------------------------

min sum{i=1,...,n} y[i]                                               //(2)

subject to

sum{i=1,...,n} x[i][j] = 1 | j=1,...,m                     // (1)

sum{j=1,...,m} x[i][j]w[i] <= W*y[i] | i=1,...,n    //(3)

//-------------------------------------------------------

添加where段对模型中常量符号和变量符号的说明

//-------------------------------------------------------

where

m,n are integers

W is a number

w is a set

x[i][j] is a variable of binary|i=1,...,n;j=1,...,m

y[i] is a variable of binary|i=1,...,n

//-------------------------------------------------------

E、添加数据段

//-------------------------------------------------------

data

W=4000

w={1020, 1930,3575,2861,4221,1541,2348, 1170}

data_relation

m=_$(w)        // <--  _\$(w) 函数给出集合w中的元素数。

n=m/2           // <-- 预备箱子数取为物体数的一半。

//-------------------------------------------------------

上面模型中,物品个数由求w中的元素数给出。预备箱子数给为物体数的一半。预备箱子数必须大于实际最优箱子数,否则问题无解。

CPLEX求解

求解模型,在Leapms环境中, 首先使用load命令调入并解析模型,  而后使用"cplex" 命令调用IBMC PLEX求解器完成求解.

如果你的leapms版本不支持cplex命令,可用savemps或者savelp保存成mps或lp模型,然后再用cplex求解(https://www.cnblogs.com/leapms/p/11846039.html)。

Leapms>load
Current directory is "ROOT".
.........
binpacking.leap
.........
lease input the filename:binpacking
===============================================================
: //-------------------------------------------------------
:
: min sum{i=1,...,n} y[i] //(2)
: subject to
: sum{i=1,...,n} x[i][j] = 1 | j=1,...,m // (1)
: sum{j=1,...,m} x[i][j]w[i] <= W*y[i] | i=1,...,n //(3)
: where
: m,n are integers
: W is a number
0: w is a set
1: x[i][j] is a variable of binary|i=1,...,n;j=1,...,m
2: y[i] is a variable of binary|i=1,...,n
3: data
4: W=4000
5: w={1020M, 1930M, 3575M, 2861M, 4221M, 1541M, 2348M, 1170}
6: //w={1020, 1930,3575,2861,4221,1541,2348, 1170}
7: data_relation
8: m=_$(w)
9: n=m
0: //-------------------------------------------------------
===============================================================
>end of the file.
arsing model:
D
R
V
O
C
S
End.
.................................
umber of variables=72
umber of constraints=16
.................................
Leapms>cplex
You must have licience for Ilo Cplex, otherwise you will violate
corresponding copyrights, continue(Y/N)?
你必须有Ilo Cplex软件的授权才能使用此功能,否则会侵犯相应版权,
是否继续(Y/N)?y Tried aggregator 1 time.
MIP Presolve eliminated 1 rows and 9 columns.
MIP Presolve modified 61 coefficients.
Reduced MIP has 15 rows, 63 columns, and 119 nonzeros.
Reduced MIP has 63 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (0.14 ticks)
Found incumbent of value 7.000000 after 0.08 sec. (0.32 ticks)
Probing time = 0.00 sec. (0.06 ticks)
Tried aggregator 1 time.
Reduced MIP has 15 rows, 63 columns, and 119 nonzeros.
Reduced MIP has 63 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.02 sec. (0.08 ticks)
Probing time = 0.00 sec. (0.06 ticks)
Clique table members: 43.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 4 threads.
Root relaxation solution time = 0.00 sec. (0.05 ticks) Nodes Cuts/
Node Left Objective IInf Best Integer Best Bound ItCnt Gap * 0+ 0 7.0000 0.0000 100.00%
* 0+ 0 4.0000 0.0000 100.00%
0 0 2.2824 5 4.0000 2.2824 8 42.94%
* 0+ 0 3.0000 2.2824 23.92%
0 0 cutoff 3.0000 2.2824 8 23.92%
Elapsed time = 0.20 sec. (0.72 ticks, tree = 0.00 MB, solutions = 3) Root node processing (before b&c):
Real time = 0.22 sec. (0.72 ticks)
Parallel b&c, 4 threads:
Real time = 0.00 sec. (0.00 ticks)
Sync time (average) = 0.00 sec.
Wait time (average) = 0.00 sec.
------------
Total (root+branch&cut) = 0.22 sec. (0.72 ticks)
Solution status = Optimal
Solution value = 3
x1_1=1
x1_5=1
x1_8=1
x6_2=1
x6_7=1
x8_3=1
x8_4=1
x8_6=1
y1=1
y6=1
y8=1

求解结果为:文件分配方案是:第一航次运送1、5、8货物;第二航次2、7货物;第三航次3、4、6货物。总计使用三个航次或三艘货轮。

装箱问题的CPLEX求解的更多相关文章

  1. C#使用cplex求解简单线性规划问题(Cplex系列-教程二)

    若还未在项目中添加cplex的引用,可以参阅上一篇文章.本文主要介绍利用C#求解线性规划的步骤,对线性规划模型进行数据填充的两种方法,以及一些cplex函数的功能和用法.包括以下几个步骤: 描述 先花 ...

  2. 【CPLEX教程03】java调用cplex求解一个TSP问题模型

    00 前言 前面我们已经搭建好cplex的java环境了,相信大家已经跃跃欲试,想动手写几个模型了.今天就来拿一个TSP的问题模型来给大家演示一下吧~ CPLEX系列教程可以关注我们的公众号哦!获取更 ...

  3. 『实践』Yalmip建模+Cplex类求解

    Yalmip建模+Cplex类求解 一.缘由 Yalmip只能设置部分Cplex的参数,所以需要调用Cplex类.而且optimize是Yalmip提供的常用函数,但此函数的返回结果参数有限. 图1 ...

  4. 二维剪板机下料问题(2-D Guillotine Cutting Stock Problem) 的混合整数规划精确求解——数学规划的计算智能特征

    二维剪板机下料问题(2-D Guillotine Cutting Stock Problem) 的混合整数规划精确求解——数学规划的计算智能特征 二维剪板机下料(2D-GCSP) 的混合整数规划是最优 ...

  5. 『实践』Yalmip+Ipopt+Cplex使用手册

    Yalmip+Ipopt+Cplex使用手册 1.软件版本 Cplex 12.6.2,Matlab R2014a,Ipopt 3.12.9,Yalmip 2.Cplex添加方法 官方下载地址: htt ...

  6. yalmip + lpsolve + matlab 求解混合整数线性规划问题(MIP/MILP)

    最近建立了一个网络流模型,是一个混合整数线性规划问题(模型中既有连续变量,又有整型变量).当要求解此模型的时候,发现matlab优化工具箱竟没有自带的可以求解这类问题的算法(只有bintprog求解器 ...

  7. MIP求解方法总结

    *本文主要记录和分享学习到的知识,算不上原创 *参考文献见链接 本文主要简述了求解MIP问题的两大类(精确求解和近似求解),或者更细致地,三大类方法(精确算法,ε-近似算法和启发式算法).由于暂时不太 ...

  8. 干货 | 10分钟教你用column generation求解vehicle routing problems

    OUTLINE 前言 VRPTW description column generation Illustration code reference 00 前言 此前向大家介绍了列生成算法的详细过程, ...

  9. 协同ADMM求解考虑碳排放约束直流潮流问题的对偶问题(A Distributed Dual Consensus ADMM Based on Partition for DC-DOPF with Carbon Emission Trading)

    协同ADMM求解考虑碳排放约束直流潮流问题的对偶问题 (A Distributed Dual Consensus ADMM Based on Partition for DC-DOPF with Ca ...

随机推荐

  1. java.lang.IllegalArgumentException异常 返回值类型的问题

    java.lang.IllegalArgumentException: Cannot create TypedQuery for query with more than one return usi ...

  2. BZOJ_3316_JC loves Mkk_ 二分答案 + 单调队列

    BZOJ_3316_JC loves Mkk_ 二分答案 + 单调队列 题意: 分析: 拆成链,二分答案,奇偶两个单调队列维护最大子段和,记录方案. 代码: #include <cstdio&g ...

  3. BZOJ_1076_[SCOI2008]奖励关_状压DP

    BZOJ_1076_[SCOI2008]奖励关_状压DP 题意: 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛 ...

  4. selenium+python,解决selenium弹出新页面,无法定位元素的问题(报错:Unable to locate element:元素)

    1.问题发生描述: 从一个页面进行点击等操作,页面跳转到第二个页面,对第二个页面中的元素,采取任何措施定位都报错,问题报错点如下: 2.出现问题的原因: 窗口句柄还停留在上一个页面,对于当前新弹出的页 ...

  5. SSRS报表服务随笔(rdl报表服务)-创建一个简单的报表

    这段时间一直在敲rdl报表,在国内的不这么留在,在国外的话,还是挺流行的,国内的话,这方面的资料很少很少,也踏过不少坑 先从SSRS了解起,SSRS全称 SQL Server Reporting Se ...

  6. Akka实践一些总结

    最近在一些服务中使用了akka,主要用来做异步解耦和本地消息分发(路由),这里简单总结一下用法. 与spring集成 网上有不少集成的例子,要使用到spring的扩展. 我这边没有这样处理,而是简单把 ...

  7. [区块链|非对称加密] 对数字证书(CA认证)原理的回顾

    摘要:文中首先解释了加密解密的一些基础知识和概念,然后通过一个加密通信过程的例子说明了加密算法的作用,以及数字证书的出现所起的作用.接着对数字证书做一个详细的解释,并讨论一下windows中数字证书的 ...

  8. 从mysql中拿到的数据构造为列表

    最近测试接口遇到一个问题,用python2.7从mysql中取到的数据是元祖类型的,元祖内部的元素也是一个元祖(并且部分元素的编码格式是unicode的): 类似这样: ((10144, u''), ...

  9. 我是如何将博客转成PDF的

    前言 只有光头才能变强 之前有读者问过我:"3y你的博客有没有电子版的呀?我想要份电子版的".我说:"没有啊,我没有弄过电子版的,我这边有个文章导航页面,你可以去文章导航 ...

  10. Java中堆(heap)和栈(stack)的区别

    简单的说: Java把内存划分成两种:一种是栈内存,一种是堆内存. 在函数中定义的一些基本类型的变量和对象的引用变量都在函数的栈内存中分配. 当在一段代码块定义一个变量时,Java就在栈中为这个变量分 ...