貌似是一道很裸的期望\(DP\)。直接说思路:

设\(f[i]\)表示到\(i\)位置时的期望分数,但是只有\(f[i]\)的话我们发现是无法转移的,我们还需要知道到\(i\)位置时的期望连续长度,于是我们再设一个\(g[i]\)表示到\(i\)位置时的期望连续长度,\(g[i]\)可以\(O(1)\)转移,转移方程为:\(g[i]=(g[i-1]+1)p[i]\),\(p[i]\)为\(i\)位置成功的概率。进而我们来yy\(f[i]\)的转移:

1.\(i\)位置为“O”,设\(x\)为\(i\)位置之前的连续的“O”的个数,则新的收益为\((x+1)^2\),即\(x^2+2x+1\),相差一个\(2x+1\),所以贡献为\(p[i](f[i-1]+2g[i-1]+1)\)

2.\(i\)位置为“X”,贡献为\(f[i-1]\)

综上所述,\(f[i]=f[i-1](1-p[i])+(f[i-1]+2g[i-1]+1)p[i]\)

这样的话代码就很显然了:

#include <bits/stdc++.h>
using namespace std;
int n;
double p[100000+5], f[100000+5], g[100000+5];
int main() {
scanf("%d", &n);
for(int i = 1; i <= n; ++i) scanf("%lf", &p[i]);
for(int i = 1; i <= n; ++i) g[i] = (g[i-1]+1)*p[i], f[i] = f[i-1]*(1-p[i])+(f[i-1]+2*g[i-1]+1)*p[i];
printf("%.8lf\n", f[n]);
return 0;
}

CF235B Let's Play Osu! 期望DP的更多相关文章

  1. 【BZOJ4318】OSU! 期望DP

    [BZOJ4318]OSU! Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1 ...

  2. 【BZOJ】4318: OSU! 期望DP

    [题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...

  3. bzoj 4318 OSU! —— 期望DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...

  4. BZOJ 4318: OSU! 期望DP

    4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件 ...

  5. BZOJ - 4318: OSU! (期望DP&Attention)

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  6. BZOJ 4318 OSU! ——期望DP

    这次要求$x^3$的概率和. 直接维护三个值$x$ $x^2$ $x^3$的期望. 概率的平方不等于平方的概率. #include <map> #include <ctime> ...

  7. 【BZOJ】4318: OSU!【期望DP】

    4318: OSU! Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 1473  Solved: 1174[Submit][Status][Discuss ...

  8. 2018.08.30 bzoj4318: OSU!(期望dp)

    传送门 简单期望dp. 感觉跟Easy差不多,就是把平方差量进阶成了立方差量,原本维护的是(x+1)2−x2" role="presentation" style=&qu ...

  9. 概率和期望dp

    概率和期望dp 概率和期望好神啊,完全不会. 网上说概率要顺着推,期望要逆着推,然而我目前做的概率期望题正好都与此相反2333   概率: 关于概率:他非常健康 初中概率题非常恐怖.现在来思考一道题: ...

随机推荐

  1. Nginx + Keepalived实现应用高可用负载均衡功能

    说明:此处仅介绍 Keepalived 实现nginx负载均衡器的高可用,关于nginx介绍和负载均衡实现可查看我的另两篇博文 Nginx负载均衡 和 Nginx配置了解 应用背景:实现高可用,避免单 ...

  2. 【译】.NET 跨平台界面框架和为什么你首先要考虑再三

    现在用 C# 来开发跨平台应用已经有很成熟的方案,即共用非界面代码,而每个操作系统搭配特定的用户界面代码.这个方案的好处是可以直接使用操作系统原生的控件和第三方控件,还能够和操作系统深度集成. 这里的 ...

  3. Django学习之九: auth 认证组件

    目录 Django auth 认证组件 配置使用auth组件及其中间件 request.user 可以直接在template模版中使用 auth组件常用api 获取认证model类 认证检测装饰器@l ...

  4. 微擎模块的安装文件manifest.xml

    微擎在安装或卸载模块时会根据manifest.xml生成(或删除)数据库中相应记录,并执行manifest.xml里指定的脚本. manifest.xml文件内容详细介绍如下: manifest - ...

  5. web服务器负载均衡与集群基本概念一

    Web集群是由多个同时运行同一个web应用的服务器组成,在外界看来就像一个服务器一样,这多台服务器共同来为客户提供更高性能的服务.集群更标准的定义是:一组相互独立的服务器在网络中表现为单一的系统,并以 ...

  6. 如何让nextcloud支持avi文件在线播放

    默认的nextcloud是不支持avi文件播放的,google查了一圈,都说是没法支持. 然而我觉得都是html5写的,为啥偏偏不支持. 查了一些资料,发现还是官方的代码少写了东西,可能是没考虑那么全 ...

  7. ArcPy 拷贝数据库

    使用Python脚本进行图形数据库的拷贝. 原始帖子地址:https://www.2cto.com/database/201302/187391.html 整理Python代码: # -*- codi ...

  8. Webpack 4教程 - 第七部分 减少打包体积与Tree Shaking

    转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者.原文出处:https://wanago.io/2018/08/13/webpack-4-course-part ...

  9. Java递归方法遍历二叉树的代码

    将内容过程中经常用的内容做个记录,如下内容内容是关于Java递归方法遍历二叉树的内容. package com.wzs; public class TestBinaryTree { public st ...

  10. 好代码是管出来的——.Net中的代码规范工具及使用

    上一篇文章介绍了编码标准中一些常用的工具,本篇就具体来介绍如何使用它们来完成代码管理. 本文主要内容有: Roslyn简介 开发基于Roslyn的代码分析器 常用的基于Roslyn的代码分析器 在.N ...