Description
Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removing one or more stones from any single pile. Play ends when all the stones have been removed, at which point the last player to have moved is declared the winner.

Given a position in Nim, your task is to determine how many winning moves there are in that position.A position in Nim is called “losing” if the first player to move from that position would lose if both sides played perfectly. A “winning move,” then, is a move that leaves the game in a losing position. There is a famous theorem that classifies all losing positions. Suppose a Nim position contains n piles having k1, k2, …, kn stones respectively; in such a position, there are k1 + k2 + … + kn possible moves. We write each ki in binary (base 2). Then, the Nim position is losing if and only if, among all the ki’s, there are an even number of 1’s in each digit position. In other words, the Nim position is losing if and only if the xor of the ki’s is 0.Consider the position with there piles given by k1 = 7, k2 = 11, and k3 = 13. In binary, these values are as follows:

111
1011
1101

There are an odd number of 1’s among the rightmost digits, so this position is not losing. However, suppose k3 were changed to be 12. Then, there would be exactly two 1’s in each digit position, and thus, the Nim position would become losing. Since a winning move is any move that leaves the game in a losing position, it follows that removing one stone from the third pile is a winning move when k1 = 7, k2 = 11, and k3 = 13. In fact, there are exactly three winning moves from this position: namely removing one stone from any of the three piles.

题目大意:给你n堆石子,每次可以从任意一堆石子中取走任意多个,但至少取一个。问第一次取有多少种方法使得先手必胜

Input
The input test file will contain multiple test cases, each of which begins with a line indicating the number of piles, 1 ≤ n ≤ 1000.
On the next line, there are n positive integers, 1 ≤ ki ≤ 1,000,000,000, indicating the number of stones in each pile.
The end-of-file is marked by a test case with n = 0 and should not be processed.
多组数据,做到0结束

Output
For each test case, write a single line with an integer indicating the number of winning moves from the given Nim position.

Sample Input
3
7 11 13
2
1000000000 1000000000
0

Sample Output
3
0

Nim游戏的神奇之处在于它的SG值和异或扯上了关系,Nim游戏中先手必败当且仅当x1^x2^...^xn=0,那么,这个为什么是成立的?

  • 交换律:x^y=y^x
  • 结合律:x^(y^z)=(x^y)^z
  • 拥有单位元:0^x=x
  • 相同两数运算为0:x^x=0
  • 消除律:x^y=x^z⇒y=z

因此,我们得到,对于Nim游戏而言,必败状态当且仅当x1^x2^...^xn=0,对于其他情况,先手必能使当前局面变成必败状态。

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std; #define ll long long
#define re register
#define gc getchar()
inline int read()
{
re int x(0),f(1);re char ch(gc);
while(ch<'0'||ch>'9') {if(ch=='-')f=-1; ch=gc;}
while(ch>='0'&&ch<='9') x=(x*10)+(ch^48),ch=gc;
return x*f;
} const int N=1e3;
int val[N+10],n; int main()
{
while(n=read(),n)
{
int T=0,ans=0;
for(int i=1;i<=n;++i)
val[i]=read(),T^=val[i];
if(!T) {cout<<0<<endl;break;}
for(int i=1;i<=n;++i)
if(val[i]>=(val[i]^T))
ans++;
cout<<ans<<endl;
}
return 0;
}

  

POJ2975 Nim 【博弈论】的更多相关文章

  1. POJ2975 Nim 博弈论 尼姆博弈

    http://poj.org/problem?id=2975 题目始终是ac的最大阻碍. 问只取一堆有多少方案可以使当前局面为先手必败. 显然由尼姆博弈的性质可以知道需要取石子使所有堆石子数异或和为0 ...

  2. poj2975 Nim 胜利的方案数

    Nim Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5545   Accepted: 2597 Description N ...

  3. (转载)Nim博弈论

    最近补上次参加2019西安邀请赛的题,其中的E题出现了Nim博弈论,今天打算好好看看Nim博弈论,在网上看到这篇总结得超级好的博客,就转载了过来. 转载:https://www.cnblogs.com ...

  4. [poj2975]Nim_博弈论

    Nim poj-2975 题目大意:给定n堆石子,问:多少堆石子满足操作之后先手必胜. 注释:$1\le n\le 10^3$. 想法: 我们设M=sg(x1)^sg(x2)^...^sg(xn).其 ...

  5. poj2975 Nim(经典博弈)

    Nim Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5866   Accepted: 2777 Description N ...

  6. poj2975(nim游戏取法)

    求处于必胜状态有多少种走法. if( (g[i]^ans) <= g[i]) num++; //这步判断很巧妙 // // main.cpp // poj2975 // // Created b ...

  7. hdu 3032 Nim or not Nim? 博弈论

     这题是Lasker’s Nim. Clearly the Sprague-Grundy function for the one-pile game satisfies g(0) = 0 and g( ...

  8. POJ2975:Nim(Nim博弈)

    Nim Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7279   Accepted: 3455 题目链接:http://p ...

  9. POJ2068 Nim 博弈论 dp

    http://poj.org/problem?id=2068 博弈论的动态规划,依然是根据必胜点和必输点的定义,才明白过来博弈论的dp和sg函数差不多完全是两个概念(前者包含后者),sg函数只是mex ...

随机推荐

  1. oracle学习笔记(六) JDBC使用

    JDBC使用 1. 导包 直接使用IDEA导入依赖包即可 新建一个lib,把jar包放在这里 2. 加载驱动 Class.forName("oracle.jdbc.driver.Oracle ...

  2. 前段学习 之 webpack 学习记录

    自动化安装 1.安装node (node -v查看node版本) 2.全局安装vue-cli  Npm install -g vue-cli  Vue- v:查看是否安装成功  Vue list:查看 ...

  3. Android编程示例:创建机场计划模拟器应用程序

    在本文中,我们将演示如何使用Android Studio和Java编程语言创建一个示例Android应用程序,从“临时”实现高级响应用户界面的功能.本文中讨论的应用程序将实现机场航班时刻表模拟的功能. ...

  4. MVC 伪静态路由、MVC路由配置,实现伪静态。

    前段时间,研究了一下mvc路由配置伪静态,在网上扒了很多最后还是行不通,所以我现在把这些心得整理出来,供大家分享: 1.mvc中默认路由配置是:http://localhost:24409/Home/ ...

  5. 网络流 之 P2766 最长不下降子序列问题

    题目描述 «问题描述: 给定正整数序列x1,...,xn . (1)计算其最长不下降子序列的长度s. (2)计算从给定的序列中最多可取出多少个长度为s的不下降子序列. (3)如果允许在取出的序列中多次 ...

  6. Rabbitmq集群高可用

    转载:https://www.cnblogs.com/flat_peach/archive/2013/04/07/3004008.html RabbitMQ是用erlang开发的,集群非常方便,因为e ...

  7. commons-lang3 事件机制 <EventListenerSupport>

    俗话说,站在巨人肩上,可以使我们走的更远 使用已有的java组件,可以提高我们的开发效率,减少出错几率,apache commons中包含有很多这样的组将,commons-lang3就是其中的一个,当 ...

  8. React 系列教程2:编写兰顿蚂蚁演示程序

    简介 最早接触兰顿蚂蚁是在做参数化的时候,那时候只感觉好奇,以为是很复杂的东西.因无意中看到生命游戏的 React 实现,所以希望通过兰顿蚂蚁的例子再学习一下 React. 兰顿蚂蚁的规则非常简单: ...

  9. Robust PCA via Outlier Pursuit

    目录 引 主要结果 定理1 定理2 理论证明 构造Oracle Problem 算法 Xu H, Caramanis C, Sanghavi S, et al. Robust PCA via Outl ...

  10. MacOS10.14下Eclipse安装lombok

    按照网上的教程来做,会导致eclipse启动不了,这里记录一下解决方案: 一.复制lombok.jar到../Eclipse/下 二.修改eclipse.ini,在末尾追加: -Xbootclassp ...