题目

P1438 无聊的数列

解析:

了解差分的话就很好做了

  • 先考虑修改,用差分的基本思想,左端点加上首项\(k\),因为是等差数列,所以修改的区间内都应该加一个增量,即修改区间\((l,r]\)内每个数的差分数组都加上公差\(d\),显然最后的\(r+1\)再减去\(k+(r-l)\times d\)。
  • 查询的话就是求出\(1-p\)的前缀和,也就是区间求和。

不难看出,这实际上就是一个点修改+区间修改+区间求和的题,所以直接上线段树,用线段树维护差分数组。

这个题目还有坑点就是要判断\(l,r\)的大小关系和\(r+1\)是否出界。

代码

#include <bits/stdc++.h>
using namespace std;
const int N = 2e6 + 10;
int n, m, rt;
int a[N];
class tree {
public :
int sum, lazy;
int len;
} t[N << 2]; #define lson rt << 1
#define rson rt << 1 | 1 template<class T>inline void read(T &x) {
x = 0; int f = 0; char ch = getchar();
while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar();
x = f ? -x : x;
return;
} void pushup(int rt) {
t[rt].sum = t[lson].sum + t[rson].sum;
} void build(int l, int r, int rt) {
t[rt].len = r - l + 1;
if (l == r) return;
int m = (l + r) >> 1;
build(l, m, lson);
build(m + 1, r, rson);
} inline void pushdown(int rt) {
if (t[rt].lazy) {
t[lson].lazy += t[rt].lazy;
t[rson].lazy += t[rt].lazy;
t[lson].sum += t[lson].len * t[rt].lazy;
t[rson].sum += t[rson].len * t[rt].lazy;
t[rt].lazy = 0;
}
} void update(int L, int R, int c, int l, int r, int rt) {
if (L <= l && r <= R) {
t[rt].sum += c * t[rt].len;
t[rt].lazy += c;
return;
}
pushdown(rt);
int m = (l + r) >> 1;
if (L <= m) update(L, R, c, l, m, lson);
if (R > m) update(L, R, c, m + 1, r, rson);
pushup(rt);
} int query(int L, int R, int l, int r, int rt) {
if(L <= l && r <= R) return t[rt].sum;
pushdown(rt);
int m = (l + r) >> 1, ans = 0;
if (L <= m) ans += query(L, R, l, m, lson);
if (R > m) ans += query(L, R, m + 1, r, rson);
return ans;
} main() {
read(n), read(m);
for (int i = 1; i <= n; ++i) read(a[i]);
build(1, n, 1);
for (int i = 1, opt, l ,r, k, d; i <= m; ++i) {
read(opt);
if (opt == 1) {
read(l), read(r), read(k), read(d);
update(l, l, k, 1, n, 1);
if (r > l) update(l + 1, r, d, 1, n, 1);
if (r != n) update(r + 1, r + 1, -(k + (r - l) * d), 1, n, 1);
} else {
read(k);
printf("%d\n", a[k] + query(1, k, 1, n, 1));
}
}
return 0;
}

P1438 无聊的数列 (差分+线段树)的更多相关文章

  1. LUOGU P1438 无聊的数列 (差分+线段树)

    传送门 解题思路 区间加等差数列+单点询问,用差分+线段树解决,线段树里维护的就是差分数组,区间加等差数列相当于在差分序列中l位置处+首项的值,r+1位置处-末项的值,中间加公差的值,然后单点询问就相 ...

  2. 洛谷P1438 无聊的数列 (线段树+差分)

    变了个花样,在l~r区间加上一个等差数列,等差数列的显著特点就是公差d,我们容易想到用线段树维护差分数组,在l位置加上k,在l+1~r位置加上d,最后在r+1位置减去k+(l-r)*d,这样就是在差分 ...

  3. 洛谷P1438 无聊的数列 [zkw线段树]

    题目传送门 无聊的数列 题目背景 无聊的YYB总喜欢搞出一些正常人无法搞出的东西.有一天,无聊的YYB想出了一道无聊的题:无聊的数列...(K峰:这题不是傻X题吗) 题目描述 维护一个数列{a[i]} ...

  4. Luogu P1438无聊的序列【线段树/差分】By cellur925

    题目传送门 题目大意:维护一个序列,维护区间加等差数列,单点查询的操作. 首先我们肯定是要用线段树来维护了,按照一般的思维局限,我选择了维护序列中的值,但是区间修改的时候由于公差的存在,所以区间修改有 ...

  5. [luogu P1438] 无聊的数列

    [luogu P1438] 无聊的数列 题目背景 无聊的YYB总喜欢搞出一些正常人无法搞出的东西.有一天,无聊的YYB想出了一道无聊的题:无聊的数列...(K峰:这题不是傻X题吗) 题目描述 维护一个 ...

  6. Luogu P1438无聊的数列

    洛谷 P1438无聊的数列 题目链接 点这里! 题目描述 维护一个数列\(a_i\),支持两种操作: 给出一个长度等于 \(r-l+1\)的等差数列,首项为\(k\) 公差为\(d\) 并将它对应加到 ...

  7. BZOJ_4636_蒟蒻的数列_线段树+动态开点

    BZOJ_4636_蒟蒻的数列_线段树+动态开点 Description 蒟蒻DCrusher不仅喜欢玩扑克,还喜欢研究数列 题目描述 DCrusher有一个数列,初始值均为0,他进行N次操作,每次将 ...

  8. P1438 无聊的数列

    P1438 无聊的数列 链接 分析: 等差数列可加,首项相加,公差相加. 代码: #include<cstdio> #include<algorithm> #include&l ...

  9. 【bzoj5028】小Z的加油店 扩展裴蜀定理+差分+线段树

    题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.$m$ 次操作,每次给 $[l,r]$ 内的瓶子容量增加 $ ...

随机推荐

  1. DRDS分布式SQL引擎—执行计划介绍

    摘要: 本文着重介绍 DRDS 执行计划中各个操作符的含义,以便用户通过查询计划了解 SQL 执行流程,从而有针对性的调优 SQL. DRDS分布式SQL引擎 — 执行计划介绍 前言 数据库系统中,执 ...

  2. html 微信video放大后无法返回问题

    android  video播放视频放大后无法返回,先debug下debugx5.qq.com 发现用的不是X5内核 直接激活  debugmm.qq.com/?forcex5=true  问题解决 ...

  3. Android与js互相调用

    有话要说: 本篇主要总结了简单的Android与js互相调用的方法. 在开发过程中遇到了需要在安卓中调用js方法的需求,于是将具体的实现过程总结成这篇博客. 效果: 其中“调用安卓方法”按钮是html ...

  4. WinForm 国际化的一些问题

    国际化 我之前 WinForm 国际化都是凑一些代码搞起(请看文后 Reference). 最近发现还有个官方国际化方法: 首先设置 Form 的 Localizable 属性为 true 选择 Fo ...

  5. 【Oracle RAC】Linux系统Oracle12c RAC安装配置详细记录过程V2.0(图文并茂)

    [Oracle RAC]Linux系统Oracle12c RAC安装配置详细过程V2.0(图文并茂) 2 Oracle12c RAC数据库安装准备工作2.1 安装环境介绍2.2 数据库安装软件下载3 ...

  6. jqery autocomplete 动态传递参数的问题

    今天弄一个autocomplete 向后后台动态传递参数的问题 老的写法: params: { "saleid": $("#divSalesman input[field ...

  7. sql Server 2008 数据库自动备份维护计划

    数据库中右键-‘管理’-新建维护计划 创建执行计划,设置备份时间 点击保存 完成 执行后报  ‘’错误5:拒绝访问 ’,时需到文件目录‘属性’→‘安全’设置用户的 ‘写入’ 权限

  8. vue(8)—— 组件化开发 - webpack(2)

    webpack的常用loder和插件 loder和插件是什么,现在暂且不表,看到后面你就懂了 引入css问题 直接用link标签导入css 在前面的 vue(7)—— 组件化开发 — webpack( ...

  9. SQL Server数据仓库的基础架构规划

    问题 SQL Server数据仓库具有自己的特征和行为属性,有别去其他.从这个意义上说,数据仓库基础架构规划需要与标准SQL Server OLTP数据库系统的规划不同.在本文中,我们将介绍在计划数据 ...

  10. JavaScript(四)变量

    变量的声明 在JavaScript程序中,使用一个变量之前应当使用关键字var进行声明,如下所示:var num;var sum; 也可以写成var num,sum,avg;如果只是声明变量而没有给变 ...