bzoj 2095: [Poi2010]Bridges [混合图欧拉回路]
2095: [Poi2010]Bridges
二分答案,混合图欧拉路判定
一开始想了一个上下界网络流模型,然后发现不用上下界网络流也可以
对于无向边,强制从\(u \rightarrow v\),计算每个点入度出度
两者差必须是偶数,令\(x = \frac{ind_i - outd_i}{2}\)
每条无向边v向u连容量为1的边
对于\(x>0\), s向i连容量x的边;
\(x<0\), i向t连容量-x的边。
这样一条原无向边满流 就是 与强制方向相反
有解 当且仅当 s出边满流
本题l不能初始化0,貌似有什么诡异的特殊数据...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define fir first
#define sec second
const int N = 2005, M = 1e4+5, inf = 1e9+5;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
return x*f;
}
int n, m, s, t;
struct meow {int u, v, c, d;} a[M];
struct edge {int v, ne, c, f;} e[M];
int cnt = 1, h[N];
inline void ins(int u, int v, int c) { //printf("ins %d --> %d %d\n", u, v, c);
e[++cnt] = (edge) {v, h[u], c, 0}; h[u] = cnt;
e[++cnt] = (edge) {u, h[v], 0, 0}; h[v] = cnt;
}
int d[N], q[N], head, tail, vis[N];
bool bfs() {
memset(vis, 0, sizeof(vis));
head = tail = 1;
d[s] = 0; q[tail++] = s; vis[s] = 1;
while(head != tail) {
int u = q[head++];
for(int i=h[u]; i; i=e[i].ne)
if(e[i].c > e[i].f && !vis[e[i].v]) {
int v = e[i].v;
vis[v] = 1;
d[v] = d[u]+1;
q[tail++] = v;
if(v == t) return true;
}
}
return false;
}
int cur[N];
int dfs(int u, int a) {
if(u == t || a == 0) return a;
int flow = 0, f;
for(int &i=cur[u]; i; i=e[i].ne) {
int v = e[i].v;
if(d[v] == d[u]+1 && (f = dfs(v, min(a, e[i].c - e[i].f))) > 0) {
flow += f;
e[i].f += f;
e[i^1].f -= f;
a -= f;
if(a == 0) break;
}
}
if(a) d[u] = -1;
return flow;
}
int dinic() {
int flow = 0;
while(bfs()) {
for(int i=s; i<=t; i++) cur[i] = h[i];
flow += dfs(s, inf);
}
return flow;
}
int ind[N], outd[N];
bool check(int mid) { //printf("check %d\n", mid);
cnt = 1; memset(h, 0, sizeof(h));
s = 0; t = n+1;
memset(ind, 0, sizeof(ind));
memset(outd, 0, sizeof(outd));
for(int i=1; i<=m; i++) {
int u = a[i].u, v = a[i].v;
if(a[i].c <= mid && a[i].d <= mid) {
outd[u]++, ind[v]++;
ins(v, u, 1);
} else if(a[i].c <= mid) outd[u]++, ind[v]++;
else if(a[i].d <= mid) outd[v]++, ind[u]++;
}
int sum = 0;
for(int i=1; i<=n; i++) {
int x = abs(ind[i] - outd[i]); //printf("x %d %d\n", i, x);
if(x & 1) return false;
x >>= 1;
if(ind[i] > outd[i]) ins(s, i, x), sum += x;
else if(ind[i] < outd[i]) ins(i, t, x);
}
return dinic() == sum;
}
int main() {
freopen("in.in", "r", stdin);
n = read(); m = read();
int l = inf, r = 0, ans = -1;
for(int i=1; i<=m; i++) {
a[i].u = read(), a[i].v = read(), a[i].c = read(), a[i].d = read();
l = min(l, min(a[i].c, a[i].d));
r = max(r, max(a[i].c, a[i].d));
}
//printf("%d\n", check(4)); return 0;
while(l <= r) {
int mid = (l+r) >> 1; //printf("lrmid %d %d %d\n", l, r, mid);
if(check(mid)) ans = mid, r = mid-1;
else l = mid+1;
}
if(ans == -1) puts("NIE");
else printf("%d\n", ans);
}
bzoj 2095: [Poi2010]Bridges [混合图欧拉回路]的更多相关文章
- BZOJ 2095: [Poi2010]Bridges
2095: [Poi2010]Bridges Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 869 Solved: 299[Submit][Stat ...
- bzoj 2095: [Poi2010]Bridges(二分法+混合图的欧拉回路)
[题意] 给定n点m边的无向图,对于边u,v,从u到v边权为c,从v到u的边权为d,问能够经过每条边一次且仅一次,且最大权值最小的欧拉回路. [思路] 二分答案mid,然后切断权值大于mid的边,原图 ...
- 【刷题】BZOJ 2095 [Poi2010]Bridges
Description YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛可以到另外任意一个小岛.现在YYD想骑单车从小岛1 ...
- bzoj 2095 [Poi2010]Bridges 判断欧拉维护,最大流+二分
[Poi2010]Bridges Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1448 Solved: 510[Submit][Status][D ...
- BZOJ 2095 [Poi2010]Bridges (二分+最大流判断混合图的欧拉回路)
题面 nnn个点,mmm条双向边(正向与反向权值不同),求经过最大边权最小的欧拉回路的权值 分析 见 commonc大佬博客 精髓就是通过最大流调整无向边的方向使得所有点的入度等于出度 CODE #i ...
- BZOJ 2095 [POI2010]Bridges (最大流、欧拉回路)
洛谷上有这题,但是输出方案缺SPJ..(而且我也懒得输出方案了) 题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2095 题解: 首先判 ...
- BZOJ.2095.[POI2010]Bridges(最大流ISAP 二分 欧拉回路)
题目链接 最小化最大的一条边,二分答案.然后就变成了给一张无向图定向使其为欧拉回路 二分答案后对于一个位置的两条边可能都保留,即双向边,需要给它定向:可能只保留小的一条,即单向边,不需考虑 如何给它定 ...
- [BZOJ2095][Poi2010]Bridges 最大流(混合图欧拉回路)
2095: [Poi2010]Bridges Time Limit: 10 Sec Memory Limit: 259 MB Description YYD为了减肥,他来到了瘦海,这是一个巨大的海, ...
- BZOJ2095 POI2010 Bridges 【二分+混合图欧拉回路】
BZOJ2095 POI2010 Bridges Description YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛 ...
随机推荐
- Mybatis之基于XML的表之间映射
数据库表之间的关系有3种,一对一.一对多.多对多.既然是ORM,这肯定是必须有的.在学习EF的时候也有涉及,今天就是参考着EF的来学习下MyBatis的表关系映射. 一.准备工作 1.准备Model和 ...
- 关于Struts传递json给easyui的随笔
今天在公司写测试代码,由于公司用的是ssh框架做的商城项目,我想先实现下简单的增删改查,奈何没有很好的后台页面(毕竟不能测试代码直接在他的项目里改啊) 所以想到了淘淘商城中有这个后台的管理页面,打算一 ...
- CentOS系统下Redis安装和自启动配置的步骤
相信大家都知道Redis是一个C实现的基于内存.可持久化的键值对数据库,在分布式服务中常作为缓存服务.所以这篇文章将详细介绍在CentOS系统下如何从零开始安装到配置启动服务.有需要的可以参考借鉴. ...
- 关于IDE与环境变量的一点说明
环境变量就是当计算机要执行操作时,在环境变量所制定的范围内查找该操作. 比如linux的ls命令,计算机就需要在$PATH规定的目录中寻找该ls的可执行文件. java的classpath,在该规定的 ...
- mysql批量数据脚本
mysql批量数据脚本 1 建表 create table dept( id int unsigned primary key auto_increment, deptno mediumint uns ...
- SVN的安装和配置
SVN为程序开发团队常用的代码管理,版本控制软件:下面我们来介绍TortoiseSVN的安装,和其服务器的搭建:(下面为windows 64位系统下的搭建) 闲来无事,就在本地搭建了一个SVN环境,网 ...
- [知了堂学习笔记]_Jquery_Validate 表单校验的使用
一.效果图: 二.JqueryValidate的好处 在做注册.或者类似以上的表单提交的时候,大家是不是都很烦那种,把数据拿到后台去判断, 可能经过了正则表达式之类的复杂判断,然后发现数据错误.接着通 ...
- Spring @Scheduled 在tomcat容器里面执行两次
今天在用spring里面的@Scheduled执行定时任务,但是发现到触发定时任务的时间点总会执行两次.原因是修改了tomcat conf包下面的server.xml文件导致的.配置如下: <H ...
- 流API--分组和分片
分组和分片 对具有相同特性的值进行分组时一个很常见的任务,我们可以直接使用groupingBy来进行分组. 当分类函数是一个predicate函数时,流会被分成2组列表,一组返回true,一组返回fa ...
- 在Tomcat中配置单点登录
单点登录:Single Sign-On .概述 一旦你设置了realm和验证的方法,你就需要进行实际的用户登录处理.一般说来,对用户而言登录系统是一件很麻烦的事情,你必须尽量减少用户登录验证的次数.作 ...