Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.

Example 1:

Input: n = 12
Output: 3
Explanation: 12 = 4 + 4 + 4.

Example 2:

Input: n = 13
Output: 2
Explanation: 13 = 4 + 9.

Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.

又是超哥一个人辛苦的更新题目,一个人托起 LeetCode 免费题的一片天空啊,赞一个~ 这道题说是给我们一个正整数,求它最少能由几个完全平方数组成。这道题是考察四平方和定理,to be honest, 这是我第一次听说这个定理,天啦撸,我的数学是语文老师教的么?! 闲话不多扯,回来做题。先来看第一种很高效的方法,根据四平方和定理,任意一个正整数均可表示为4个整数的平方和,其实是可以表示为4个以内的平方数之和,那么就是说返回结果只有 1,2,3 或4其中的一个,首先我们将数字化简一下,由于一个数如果含有因子4,那么我们可以把4都去掉,并不影响结果,比如2和8,3和12等等,返回的结果都相同,读者可自行举更多的栗子。还有一个可以化简的地方就是,如果一个数除以8余7的话,那么肯定是由4个完全平方数组成,这里就不证明了,因为我也不会证明,读者可自行举例验证。那么做完两步后,一个很大的数有可能就会变得很小了,大大减少了运算时间,下面我们就来尝试的将其拆为两个平方数之和,如果拆成功了那么就会返回1或2,因为其中一个平方数可能为0. (注:由于输入的n是正整数,所以不存在两个平方数均为0的情况)。注意下面的 !!a + !!b 这个表达式,可能很多人不太理解这个的意思,其实很简单,感叹号!表示逻辑取反,那么一个正整数逻辑取反为0,再取反为1,所以用两个感叹号!!的作用就是看a和b是否为正整数,都为正整数的话返回2,只有一个是正整数的话返回1,参见代码如下:

解法一:

class Solution {
public:
int numSquares(int n) {
while (n % == ) n /= ;
if (n % == ) return ;
for (int a = ; a * a <= n; ++a) {
int b = sqrt(n - a * a);
if (a * a + b * b == n) {
return !!a + !!b;
}
}
return ;
}
};

这道题远不止这一种解法,我们还可以用动态规划 Dynamic Programming 来做,我们建立一个长度为 n+1 的一维dp数组,将第一个值初始化为0,其余值都初始化为 INT_MAX, i从0循环到n,j从1循环到 i+j*j <= n 的位置,然后每次更新 dp[i+j*j] 的值,动态更新 dp 数组,其中 dp[i] 表示正整数i能少能由多个完全平方数组成,那么我们求n,就是返回 dp[n] 即可,也就是 dp 数组的最后一个数字。需要注意的是这里的写法,i必须从0开始,j必须从1开始,因为我们的初衷是想用 dp[i] 来更新 dp[i + j * j],如果 i=0, j=1 了,那么 dp[i] 和 dp[i + j * j] 就相等了,怎么能用本身 dp 值加1来更新自身呢,参见代码如下:

解法二:

class Solution {
public:
int numSquares(int n) {
vector<int> dp(n + , INT_MAX);
dp[] = ;
for (int i = ; i <= n; ++i) {
for (int j = ; i + j * j <= n; ++j) {
dp[i + j * j] = min(dp[i + j * j], dp[i] + );
}
}
return dp.back();
}
};

下面再来看一种 DP 解法,这种解法跟上面有些不同,上面那种解法是初始化了整个长度为 n+1 的 dp 数字,但是初始化的顺序不定的,而这个种方法只初始化了第一个值为0,那么在循环里计算,每次增加一个 dp 数组的长度,里面那个 for 循环一次循环结束就算好下一个数由几个完全平方数组成,直到增加到第 n+1 个,返回即可,想更直观的看这两种DP方法的区别,建议每次循环后都打印出 dp 数字的值来观察其更新的顺序,参见代码如下:

解法三:

class Solution {
public:
int numSquares(int n) {
vector<int> dp(, );
while (dp.size() <= n) {
int m = dp.size(), val = INT_MAX;
for (int i = ; i * i <= m; ++i) {
val = min(val, dp[m - i * i] + );
}
dp.push_back(val);
}
return dp.back();
}
};

最后我们来介绍一种递归 Recursion 的解法,这种方法的好处是写法简洁,但是运算效率不敢恭维。我们的目的是遍历所有比n小的完全平方数,然后对n与完全平方数的差值递归调用函数,目的是不断更新最终结果,知道找到最小的那个,参见代码如下:

解法四:

class Solution {
public:
int numSquares(int n) {
int res = n, num = ;
while (num * num <= n) {
int a = n / (num * num), b = n % (num * num);
res = min(res, a + numSquares(b));
++num;
}
return res;
}
};

讨论:解法二三四的运算效率真的不高,强推解法一,高效又易懂,如果想强行优化后三个算法,可以将解法一的前两个 if 判断加到后三个的算法的开头,能很大的提高运算效率。

类似题目:

Count Primes

Ugly Number II

参考资料:

https://leetcode.com/problems/perfect-squares/

http://bookshadow.com/weblog/2015/09/09/leetcode-perfect-squares/

https://leetcode.com/problems/perfect-squares/discuss/71505/Simple-Java-DP-Solution

https://leetcode.com/problems/perfect-squares/discuss/71512/Static-DP-C%2B%2B-12-ms-Python-172-ms-Ruby-384-ms

https://leetcode.com/problems/perfect-squares/discuss/71488/Summary-of-4-different-solutions-(BFS-DP-static-DP-and-mathematics)

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Perfect Squares 完全平方数的更多相关文章

  1. [LeetCode] 0279. Perfect Squares 完全平方数

    题目 Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9 ...

  2. [LintCode] Perfect Squares 完全平方数

    Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 1 ...

  3. LeetCode Perfect Squares

    原题链接在这里:https://leetcode.com/problems/perfect-squares/ 题目: Given a positive integer n, find the leas ...

  4. [LeetCode] 279. Perfect Squares 完全平方数

    Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 1 ...

  5. 一、Perfect Squares 完全平方数

    一原题 Given a positive integer n, find the least number of perfect square numbers (, , , , ...) which ...

  6. Leetcode279. Perfect Squares完全平方数

    给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n.你需要让组成和的完全平方数的个数最少. 示例 1: 输入: n = 12 输出: 3 解释: 12 ...

  7. LeetCode 279. 完全平方数(Perfect Squares) 7

    279. 完全平方数 279. Perfect Squares 题目描述 给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n.你需要让组成和的完全平方数 ...

  8. Leetcode之广度优先搜索(BFS)专题-279. 完全平方数(Perfect Squares)

    Leetcode之广度优先搜索(BFS)专题-279. 完全平方数(Perfect Squares) BFS入门详解:Leetcode之广度优先搜索(BFS)专题-429. N叉树的层序遍历(N-ar ...

  9. 花式求解 LeetCode 279题-Perfect Squares

    原文地址 https://www.jianshu.com/p/2925f4d7511b 迫于就业的压力,不得不先放下 iOS 开发的学习,开始走上漫漫刷题路. 今天我想聊聊 LeetCode 上的第2 ...

随机推荐

  1. SQL Tuning 基础概述07 - SQL Joins

    N多年之前,刚刚接触SQL的时候,就被多表查询中的各种内连接,外连接,左外连接,右外连接等各式各样的连接弄的晕头转向. 更坑的是书上看到的各种表连接还有两种不同的写法, 比如对于表A,表B的查询 1, ...

  2. Cesium原理篇:Property

    之前主要是Entity的一个大概流程,本文主要介绍Cesium的属性,比如defineProperties,Property(ConstantProperty,CallbackProperty,Con ...

  3. heart

    好久没写博客了,不想废话,直接欣赏效果! 点击这里,查看完美效果! 附完整代码: <!doctype html> <html> <head> <meta ch ...

  4. 纯WebApi,不包含MVC Demo

    1.创建项目 只是单纯的使用Web API的功能,而不需要使用的MVC,这个时候就该抛开MVC来新建项目了. 首先,新建一个Asp.Net空应用程序,在程序集中添加引用System.Web.Http和 ...

  5. jQuery-1.9.1源码分析系列完毕目录整理

    jQuery 1.9.1源码分析已经完毕.目录如下 jQuery-1.9.1源码分析系列(一)整体架构 jQuery-1.9.1源码分析系列(一)整体架构续 jQuery-1.9.1源码分析系列(二) ...

  6. 让Lua自己把文件夹下面的所有文件自动加载起来吧

    没有想到我也做了一回标题党.其实这里边说的自动还是有夸大其词的部分.其实只是指定文件夹,然后根据指定文件夹数据,加载目录下边的内容而已. 怎么来进行Lua文件的加载 一般情况下,相关的功能需要给他创建 ...

  7. 网站美化常见CSS

    伴随网络时代日新月异的发展,用户不仅仅满足于软件系统的功能需求,对软件系统的页面显示效果以及交互模式的要求也逐渐提高.尤其是展示性质的平台页面对于界面美化效果要求更高,有一句话说的好:Html是结构, ...

  8. C#多态“说来也说”——逻辑层BLL中的多态使用

    本文版权归博客园和作者吴双本人共同所有.欢迎转载,转载和爬虫请注明原文地址 http://www.cnblogs.com/tdws/p/5861842.html 昨天晚上,有个朋友说学了好久,依然没搞 ...

  9. Yii2.X 多语言-类图

  10. 浅谈Collection集合

    俗话说:一个东西,一件事都离不开三句话:"是什么,为什么,怎么办" 集合是什么: 集合简单的说一个数组集合的高级体现,用来存储数据或对象的容器: 集合为什么存在: 集合只是体现了对 ...