●CodeForces 280D k-Maximum Subsequence Sum
题链:
http://codeforces.com/problemset/problem/280/D
题解:
神题,巨恶心。
(把原来的那个dp题升级为:序列带修 + 多次询问区间[l,r]内取不超过k段的不重叠子串,使得其和最大)。
按费用流的思路来看,建图方法如下:
每个点拆成两个点 i , i' ,建立超源 S和超汇 T
i -> i' : (1,a[i])
S -> i : (1,0)
i'-> T : (1,0)
i'-> i+1: (1,0)
那么对于某段区间,按照spfa最长路费用流去一条路一条路增广,
直到某个时候增广数==k或者增广路的费用为负数就停止。
分析其增广方式,不难发现一个重要特点(可以自己简单伪证一下哈):
每次找到增广路都是连续的一段,即对应着序列区间上和最大的连续的一段。
接下来增广操作,就会取出这一段的权值和,并把这一段的所有数全部 * -1。(就是增广后的反向边的花费)
所以就用线段树维护区间最大子段和以及最小子段和,
并且要支持单点修改和区间 * -1操作。
每次就取出[l,r]区间内的最大的子段,并把对应的子段全部 * -1,
如果取得次数==k或者最大的子段和为负数就停止。
。。。这个线段树不是一般的烦。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 100005
#define INF 0x3f3f3f3f
using namespace std;
int a[MAXN];
struct data{
int sval,lval,rval,sum,sl,sr,lr,rl;
void init(bool type){
if(type) lval=rval=sval=-INF;
else lval=rval=sval=+INF;
}
void reverse(){
sval*=-1; lval*=-1; rval*=-1; sum*=-1;
}
void update(const data &l,const data &r,bool type){
sum=l.sum+r.sum;
if(type)
lval=max(l.lval,l.sum+r.lval), rval=max(r.rval,r.sum+l.rval),
sval=max(max(l.sval,r.sval),l.rval+r.lval);
else
lval=min(l.lval,l.sum+r.lval), rval=min(r.rval,r.sum+l.rval),
sval=min(min(l.sval,r.sval),l.rval+r.lval); if(l.lval==lval) lr=l.lr; else lr=r.lr; if(r.rval==rval) rl=r.rl; else rl=l.rl; if(l.sval==sval) sl=l.sl,sr=l.sr;
else if(r.sval==sval) sl=r.sl,sr=r.sr;
else sl=l.rl,sr=r.lr;
}
};
struct info{
data maxi,mini;
void init(){
maxi.init(1);
mini.init(0);
}
};
struct SGT{
#define ls lson[u]
#define rs rson[u]
bool lazy[MAXN<<1];
int lson[MAXN<<1],rson[MAXN<<1],rt,sz;
info node[MAXN<<1];
void init(){
rt=sz=0;
memset(lazy,0,sizeof(lazy));
memset(lson,0,sizeof(lson));
memset(rson,0,sizeof(rson));
for(int i=0;i<(MAXN<<1);i++)
node[i].init();
}
void pushup(info &now,const info &l,const info &r){
now.maxi.update(l.maxi,r.maxi,1);//___________________维护最大连续和_1__
now.mini.update(l.mini,r.mini,0);//___________________维护最小连续和_0__
}
void pushdown(int u){
node[ls].maxi.reverse(); node[ls].mini.reverse();
node[rs].maxi.reverse(); node[rs].mini.reverse();
swap(node[ls].maxi,node[ls].mini);
swap(node[rs].maxi,node[rs].mini);
lazy[u]^=1; lazy[ls]^=1; lazy[rs]^=1;
}
void build(int &u,int l,int r){
u=++sz;
if(l==r) {
node[u].maxi=(data){a[l],a[l],a[l],a[l],l,r,r,l};
node[u].mini=(data){a[l],a[l],a[l],a[l],l,r,r,l};
return;
}
int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
pushup(node[u],node[ls],node[rs]);
}
void modify(int u,int l,int r,int p){
if(l==r){
node[u].maxi=(data){a[l],a[l],a[l],a[l],l,r,r,l};
node[u].mini=(data){a[l],a[l],a[l],a[l],l,r,r,l};
return;
}
if(lazy[u]) pushdown(u);
int mid=(l+r)>>1;
if(p<=mid) modify(ls,l,mid,p);
else modify(rs,mid+1,r,p);
pushup(node[u],node[ls],node[rs]);
}
void modify(int u,int l,int r,int al,int ar){
if(al<=l&&r<=ar){
node[u].maxi.reverse(); node[u].mini.reverse();
swap(node[u].maxi,node[u].mini);
lazy[u]^=1; return;
}
if(lazy[u]) pushdown(u);
int mid=(l+r)>>1;
if(al<=mid) modify(ls,l,mid,al,ar);
if(mid<ar) modify(rs,mid+1,r,al,ar);
pushup(node[u],node[ls],node[rs]);
}
info query(int u,int l,int r,int al,int ar){
if(al<=l&&r<=ar) return node[u];
info now,lnode,rnode;
now.init(); lnode.init(); rnode.init();
if(lazy[u]) pushdown(u);
int mid=(l+r)>>1;
if(al<=mid) lnode=query(ls,l,mid,al,ar);
if(mid<ar) rnode=query(rs,mid+1,r,al,ar); if(mid<al) now=rnode;
else if(ar<=mid) now=lnode;
else pushup(now,lnode,rnode);
return now;
}
#undef ls
#undef rs
}T1;
int N,M,ans;
void dfs(int k,int l,int r){
info now=T1.query(T1.rt,1,N,l,r);
if(now.maxi.sval<=0) return;
ans+=now.maxi.sval;
T1.modify(T1.rt,1,N,now.maxi.sl,now.maxi.sr);
if(k-1)dfs(k-1,l,r);
T1.modify(T1.rt,1,N,now.maxi.sl,now.maxi.sr);
}
int main()
{
//freopen("280D.in","r",stdin);
scanf("%d",&N); T1.init();
for(int i=1;i<=N;i++) scanf("%d",&a[i]);
T1.build(T1.rt,1,N);
scanf("%d",&M);
for(int i=1,c,l,r,k;i<=M;i++){
scanf("%d",&c);
if(!c){
scanf("%d",&k); scanf("%d",&a[k]);
T1.modify(T1.rt,1,N,k);
}
else{
scanf("%d%d%d",&l,&r,&k);
ans=0;
dfs(k,l,r);
printf("%d\n",ans);
}
}
return 0;
}
●CodeForces 280D k-Maximum Subsequence Sum的更多相关文章
- 中国大学MOOC-陈越、何钦铭-数据结构-2015秋 01-复杂度2 Maximum Subsequence Sum (25分)
01-复杂度2 Maximum Subsequence Sum (25分) Given a sequence of K integers { N1,N2, ..., NK }. ...
- PAT1007:Maximum Subsequence Sum
1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...
- PTA (Advanced Level) 1007 Maximum Subsequence Sum
Maximum Subsequence Sum Given a sequence of K integers { N1, N2, ..., NK }. A continuous su ...
- 【DP-最大子串和】PAT1007. Maximum Subsequence Sum
1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 32000 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...
- PAT Maximum Subsequence Sum[最大子序列和,简单dp]
1007 Maximum Subsequence Sum (25)(25 分) Given a sequence of K integers { N~1~, N~2~, ..., N~K~ }. A ...
- PAT甲 1007. Maximum Subsequence Sum (25) 2016-09-09 22:56 41人阅读 评论(0) 收藏
1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...
- PAT 甲级 1007 Maximum Subsequence Sum (25)(25 分)(0不是负数,水题)
1007 Maximum Subsequence Sum (25)(25 分) Given a sequence of K integers { N~1~, N~2~, ..., N~K~ }. A ...
- PAT 1007 Maximum Subsequence Sum(最长子段和)
1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...
- pat1007. Maximum Subsequence Sum (25)
1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...
- PTA 01-复杂度2 Maximum Subsequence Sum (25分)
题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/663 5-1 Maximum Subsequence Sum (25分) Given ...
随机推荐
- TensorFlow问题“The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations.”
出现的问题: 在使用TensorFlow跑官方教程例子时报以下warning: 虽程序能正常跑出结果,但作为一名强迫症患者对此很是不爽,于是查找资料找到隐藏该warning的解决办法. 解决办法: 在 ...
- 需求分析&原型改进
需求&原型改进 一.给目标用户展现原型,与目标用户进一步沟通理解需求. 1.用户痛点:需要随时随地练习四则运算,并能看到用户的统计数据. 2.用户反馈:较好地解决练习需求,若能加入班级概念则更 ...
- Beta冲刺 第一天
Beta冲刺 第一天 1. 昨天的困难 由于今天还是第一天,所以暂时没有昨天的困难. 2. 今天解决的进度 潘伟靖: 对代码进行了review 1.将某些硬编码改为软编码 2.合并了一些方法,简化代码 ...
- Alpha冲刺Day8
Alpha冲刺Day8 一:站立式会议 今日安排: 经过为期5天的冲刺,基本完成企业人员模块的开发.因第三方机构与企业存在委托的关系.第三方人员对于风险的自查.风险列表的展示以及自查风险的统计展示(包 ...
- ajax 返回Json方法
public static void sendJsonData(String data) { ActionContext ac = ActionContext.getContext(); HttpSe ...
- Nginx在windows环境下的安装与简单配置
版权声明:本文为博主原创文章,未经博主允许不得转载. 一. 下载并安装Nginx 去Nginx官网下载 我这里选取nginx/Windows-1.10.3版本,下载后解压出来即可,解压出来的路径不能含 ...
- java语法基础(总结)
1,关键字:其实就是某种语言赋予了特殊含义的单词. 保留字:其实就是还没有赋予特殊含义,但是准备日后要使用过的单词. 2,标示符:其实就是在程序中自定义的名词.比如类名,变量名,函数名.包含 0-9. ...
- php后台的在控制器中就可以实现阅读数增加
$smodel=M('Sswz');$smodel->where($map)->setInc('view' ,1);php后台的在控制器中就可以实现阅读数增加前台不需要传值
- 在bootstrap中让竖向排列的输入框水平排列
在bootstrap中可以使用自带的样式标记来控制样式,但是同时可以利用最原始的css样式来解决达到需求 如下所示可以看出来两个inline-block就可以使得两个水平排列 block和inline ...
- Android:触屏事件
Android触屏事件包含两种: 1)屏幕触屏事件:重写onTouchEvent(MotionEvent event): 2)控件触屏事件:给控件注册触屏事件,setOnTouchEventListe ...