Description

  自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?

Input

  第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1

Output

  一个整数,表示不同的满足要求的树的个数,无解输出0

Sample Input

3
1
-1
-1

Sample Output

2

HINT

  两棵树分别为1-2-3;1-3-2

该题运用到了树的prufer编码的性质:
  (1)树的prufer编码的实现
        不断 删除树中度数为1的最小序号的点,并输出与其相连的节点的序号  直至树中只有两个节点
  (2)通过观察我们可以发现
        任意一棵n节点的树都可唯一的用长度为n-2的prufer编码表示
        度数为m的节点的序号在prufer编码中出现的次数为m-1
  (3)怎样将prufer编码还原为一棵树??
        从prufer编码的最前端开始扫描节点,设该节点序号为 u ,寻找不在prufer编码的最小序号且没有被标记的节点 v ,连接   u,v,并标记v,将u从prufer编码中删除。扫描下一节点。
该题需要将树转化为prufer编码
因为一个点度为di,那么在prufer序列中出现di-1次
所以对于已知的度,sum=∑di-1(已知),cnt为有多少已知点
那么从序列中选出sum为方案C(sum,n-2)
对于已知di,产生的方案数为${{(n-2)!} \over {\prod (d_i - 1)}!}$
对于无限制的点,可以这样考虑,剩下的n-2-sum为每一位选择都有n-cnt种
所以方案为(n-cnt)n-2-sum
把三者乘起来
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
struct Big_Num
{
int a[],len;
Big_Num()
{}
Big_Num &operator *=(const int &b)
{int i;
for (i=;i<=len;i++)
a[i]*=b;
for (i=;i<=len;i++)
a[i+]+=a[i]/,a[i]%=;
int loc=len+;
while (a[loc])
{
a[loc+]+=a[loc]/;
a[loc]%=;
loc++;
}
len=loc-;
}
void print()
{int i;
for (i=len;i>=;i--) printf("%d",a[i]);
cout<<endl;
}
}ans;
int d[],du[],pri[],pre[],tot,n,cnt,sum,flag;
bool vis[];
int main()
{int i,j;
freopen("tree1.in","r",stdin);
freopen("1005.out","w",stdout);
cin>>n;
flag=;
for (i=;i<=n;i++)
{
scanf("%d",&d[i]);
if (d[i]!=-) cnt++,sum+=d[i]-;
if (d[i]==||d[i]==n) flag=;
}
if (n==)
{
cout<<;
return ;
}
if (n==)
{
if ((d[]==||d[]>)||(d[]==||d[]>))
cout<<;
else cout<<;
return ;
}
if (sum>n-)
{
cout<<;
return ;
}
if (flag)
{
cout<<;
return ;
}
for (i=;i<=n-;i++)
du[i]++;
for (i=;i<=n--sum;i++)
du[i]--;
for (i=;i<=n;i++)
if (d[i]!=-)
{
for (j=;j<=d[i]-;j++)
du[j]--;
}
for (i=;i<=n--sum;i++)
du[n-cnt]++; for (i=;i<=;i++)
{
if (vis[i]==)
{
pri[++tot]=i;
pre[i]=i;
}
for (j=;j<=tot;j++)
{
if (pri[j]*i>) break;
vis[i*pri[j]]=;
pre[i*pri[j]]=pri[j];
if (i%pri[j]==) break;
}
}
for (i=;i>=;i--)
if (pre[i]!=i)
{
du[pre[i]]+=du[i];
du[i/pre[i]]+=du[i];
du[i]=;
}
ans.a[]=;ans.len=;
for (i=;i<=;i++)
if (du[i]>)
{
for (j=;j<=du[i];j++)
ans*=i;
}
ans.print();
}

[HNOI2008]明明的烦恼的更多相关文章

  1. BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)

    题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...

  2. bzoj1005 [HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3032  Solved: 1209 Description ...

  3. 【bzoj1005】[HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4175  Solved: 1660[Submit][Stat ...

  4. BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数

    1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  5. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  6. BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )

    首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数 ...

  7. 【BZOJ1005】[HNOI2008]明明的烦恼(prufer序列)

    [BZOJ1005][HNOI2008]明明的烦恼(prufer序列) 题面 BZOJ 洛谷 题解 戳这里 #include<iostream> #include<cstdio> ...

  8. 【BZOJ 1005】 1005: [HNOI2008]明明的烦恼 (prufer数列+高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4981  Solved: 1941 Description ...

  9. BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5786  Solved: 2263[Submit][Stat ...

  10. 【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度

    [BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可 ...

随机推荐

  1. Alpha冲刺No.8

    一.站立式会议 解决真实手机中出现的各种问题 细化界面设计 数据库上传与获取日拍 二.项目实际进展 能够上传和获取日拍信息 界面设计微调 三.燃尽图 四.团队合照 五.总结 白天金工实习,晚上才有时间 ...

  2. C语言指针作业

    一.PTA实验作业 题目1:6-5 判断回文字符串 1. 本题PTA提交列表 2. 设计思路 3.代码截图 4.本题调试过程碰到问题及PTA提交列表情况说明. 第一次做的时候我j直接等于count,其 ...

  3. 【Alpha版本】冲刺阶段 - Day2 - 漂流

    今日进展 袁逸灏:实现车辆的子弹发射(3.5h) 启动类,子弹类(修改类),游戏画面类(修改类) 刘伟康:继续借鉴其他 alpha 冲刺博客,初步了解墨刀.leangoo等工具(2h) 刘先润:解决了 ...

  4. Archlinux无线联网教程

    本人是学生党,故对于有线方式不甚了解,学校里一般使用mentohust用动态IP方式联网,或者直接连接wifi,这里介绍无线联网的一些方式,主要包括公共wifi和带有WEP或者WPA或者WPA2PSK ...

  5. C++中文件的读写

    C++中文件的读写 在C++中如何实现文件的读写? 一.ASCII 输出 为了使用下面的方法, 你必须包含头文件<fstream.h>(译者注:在标准C++中,已经使用<fstrea ...

  6. es6对象字面量增强

    相对于ES5,ES6的对象字面量得到了很大程度的增强.这些改进我们可以输入更少的代码同时语法更易于理解.那就一起来看看对象增强的功能.对象字面量简写(Object Literal Shorthand) ...

  7. 识别图片中文字(百度AI)

     这个是百度官方的文档         https://ai.baidu.com/docs#/OCR-API/top    通用的文字识别,如果是其他的含生僻字/含位置信息的版本,请参考官方的文档,只 ...

  8. C# 大数组赋值给小数组,小数组赋值给大数组

    ]; ]; " }; arraymax = arraystr;//变成和arraystr一样 arraymin = arraystr;//变成和arraystr一样

  9. IIS 配置 FTP 网站

    在 服务器管理器 的 Web服务器IIS 上安装 FTP 服务 在 IIS管理器 添加FTP网站 配置防火墙规则 说明:服务器环境是Windows Server 2008 R2,IIS7.5. 1. ...

  10. istio入门(00)istio的学习资源

    官网:https://istio.io/ 理论知识: http://www.uml.org.cn/wfw/201710131.asp 环境搭建: http://dockone.io/article/2 ...