Description

  自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?

Input

  第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1

Output

  一个整数,表示不同的满足要求的树的个数,无解输出0

Sample Input

3
1
-1
-1

Sample Output

2

HINT

  两棵树分别为1-2-3;1-3-2

该题运用到了树的prufer编码的性质:
  (1)树的prufer编码的实现
        不断 删除树中度数为1的最小序号的点,并输出与其相连的节点的序号  直至树中只有两个节点
  (2)通过观察我们可以发现
        任意一棵n节点的树都可唯一的用长度为n-2的prufer编码表示
        度数为m的节点的序号在prufer编码中出现的次数为m-1
  (3)怎样将prufer编码还原为一棵树??
        从prufer编码的最前端开始扫描节点,设该节点序号为 u ,寻找不在prufer编码的最小序号且没有被标记的节点 v ,连接   u,v,并标记v,将u从prufer编码中删除。扫描下一节点。
该题需要将树转化为prufer编码
因为一个点度为di,那么在prufer序列中出现di-1次
所以对于已知的度,sum=∑di-1(已知),cnt为有多少已知点
那么从序列中选出sum为方案C(sum,n-2)
对于已知di,产生的方案数为${{(n-2)!} \over {\prod (d_i - 1)}!}$
对于无限制的点,可以这样考虑,剩下的n-2-sum为每一位选择都有n-cnt种
所以方案为(n-cnt)n-2-sum
把三者乘起来
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
struct Big_Num
{
int a[],len;
Big_Num()
{}
Big_Num &operator *=(const int &b)
{int i;
for (i=;i<=len;i++)
a[i]*=b;
for (i=;i<=len;i++)
a[i+]+=a[i]/,a[i]%=;
int loc=len+;
while (a[loc])
{
a[loc+]+=a[loc]/;
a[loc]%=;
loc++;
}
len=loc-;
}
void print()
{int i;
for (i=len;i>=;i--) printf("%d",a[i]);
cout<<endl;
}
}ans;
int d[],du[],pri[],pre[],tot,n,cnt,sum,flag;
bool vis[];
int main()
{int i,j;
freopen("tree1.in","r",stdin);
freopen("1005.out","w",stdout);
cin>>n;
flag=;
for (i=;i<=n;i++)
{
scanf("%d",&d[i]);
if (d[i]!=-) cnt++,sum+=d[i]-;
if (d[i]==||d[i]==n) flag=;
}
if (n==)
{
cout<<;
return ;
}
if (n==)
{
if ((d[]==||d[]>)||(d[]==||d[]>))
cout<<;
else cout<<;
return ;
}
if (sum>n-)
{
cout<<;
return ;
}
if (flag)
{
cout<<;
return ;
}
for (i=;i<=n-;i++)
du[i]++;
for (i=;i<=n--sum;i++)
du[i]--;
for (i=;i<=n;i++)
if (d[i]!=-)
{
for (j=;j<=d[i]-;j++)
du[j]--;
}
for (i=;i<=n--sum;i++)
du[n-cnt]++; for (i=;i<=;i++)
{
if (vis[i]==)
{
pri[++tot]=i;
pre[i]=i;
}
for (j=;j<=tot;j++)
{
if (pri[j]*i>) break;
vis[i*pri[j]]=;
pre[i*pri[j]]=pri[j];
if (i%pri[j]==) break;
}
}
for (i=;i>=;i--)
if (pre[i]!=i)
{
du[pre[i]]+=du[i];
du[i/pre[i]]+=du[i];
du[i]=;
}
ans.a[]=;ans.len=;
for (i=;i<=;i++)
if (du[i]>)
{
for (j=;j<=du[i];j++)
ans*=i;
}
ans.print();
}

[HNOI2008]明明的烦恼的更多相关文章

  1. BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)

    题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...

  2. bzoj1005 [HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3032  Solved: 1209 Description ...

  3. 【bzoj1005】[HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4175  Solved: 1660[Submit][Stat ...

  4. BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数

    1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  5. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  6. BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )

    首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数 ...

  7. 【BZOJ1005】[HNOI2008]明明的烦恼(prufer序列)

    [BZOJ1005][HNOI2008]明明的烦恼(prufer序列) 题面 BZOJ 洛谷 题解 戳这里 #include<iostream> #include<cstdio> ...

  8. 【BZOJ 1005】 1005: [HNOI2008]明明的烦恼 (prufer数列+高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4981  Solved: 1941 Description ...

  9. BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5786  Solved: 2263[Submit][Stat ...

  10. 【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度

    [BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可 ...

随机推荐

  1. chrome浏览器访问google插件

    访问google其实很多时候都是为了搜索资料,本文分享下,chrome浏览器访问google插件 下载地址:http://www.ggfwzs.com/ 1,下载完成后,解压: 如下: 2,打开谷歌浏 ...

  2. Beta 第三天

    今天遇到的困难: 组员对github极度的不适应 github的版本控制和协同化编程确实操作起来需要一定的熟练度,我们缺乏这种熟练度 Android Studio版本不一致项目难以打开的问题仍然无法解 ...

  3. Alpha第六天

    Alpha第六天 听说 031502543 周龙荣(队长) 031502615 李家鹏 031502632 伍晨薇 031502637 张柽 031502639 郑秦 1.前言 任务分配是VV.ZQ. ...

  4. C语言第三周作业---单层循环

    一.PTA实验作业 题目1 1.实验代码 int N = 0,i; char sex; float a[9], height; scanf("%d\n", &N); for ...

  5. transient 与 volatile 笔记

    1. transient 词义:瞬间的,短暂的 首先说说"序列化",把一个对象的表示转化为字节流的过程称为串行化(也称为序列化,serialization),从字节流中把对象重建出 ...

  6. 冲刺NO.2

    Alpha冲刺第二天 站立式会议 项目进展 团队成员在确定了所需技术之后,开始学习相关技术的使用,其中包括了HTML5,CSS与SSH框架等开发技术.并且在项目分工配合加以总结和完善,对现有发现的关于 ...

  7. Mego(06) - 关系数据库建模

    框架中提供了多种数据注释以便可以全面的描述数据库结构特性. 自增列 可以使用注释声明指定列是数据库自增列,同时能指定自增的起始及步长. public class Blog { [Identity(, ...

  8. netty : NioEventLoopGroup 源码分析

    NioEventLoopGroup 源码分析 1. 在阅读源码时做了一定的注释,并且做了一些测试分析源码内的执行流程,由于博客篇幅有限.为了方便 IDE 查看.跟踪.调试 代码,所以在 github ...

  9. Mock API是如何在开发中发光发热的?

    在长期的服务过程中,我们经常会遇到前来咨询的用户与我们反馈以下这种情况:咨询者是一个前端人员,在项目开发的过程中需要与后端进行对接,遇到后端还没完成数据输出的情况下,他只好写静态模拟数据,在遇到大型项 ...

  10. Spring AOP AspectJ

    本文讲述使用AspectJ框架实现Spring AOP. 再重复一下Spring AOP中的三个概念, Advice:向程序内部注入的代码. Pointcut:注入Advice的位置,切入点,一般为某 ...