I - pog loves szh III

Time Limit:6000MS     Memory Limit:131072KB     64bit IO Format:%I64d & %I64u

Description

Pog and Szh are playing games. Firstly Pog draw a tree on the paper. Here we define 1 as the root of the tree.Then Szh choose some nodes from the tree. He wants Pog helps to find the least common ancestor (LCA) of these node.The question is too difficult for Pog.So he decided to simplify the problems.The nodes picked are consecutive numbers from l_i to r_i ([l_i, r_i]).

Hint : You should be careful about stack overflow !

Input

Several groups of data (no more than 3 groups,n \geq 10000 or Q \geq 10000).

The following line contains ans integers,n (2 \leq n \leq 300000).

AT The following n-1 line, two integers are b_i and c_i at every line, it shows an edge connecting b_i and c_i.

The following line contains ans integers,Q (Q \leq 300000).

AT The following Q line contains two integers li and ri(1 \leq li \leq ri \leq n).

Output

For each case,output Q integers means the LCA of [l_i,r_i].

Sample Input

5
1 2
1 3
3 4
4 5
5
1 2
2 3
3 4
3 5
1 5

Sample Output

1
1
3
3
1
/*
hdu 5266 pog loves szh III(lca + 线段树) problem:
给你一棵树,然后查询节点l~r的最小公共祖先 solve:
如果用在线算法,查询的时候可以直接O(1)实现,然后查询节点l~r的最小公共祖先感觉很像区间最值
而且可以发现 如果知道a~b和c~d的最小公共祖先,那么a~d的lca 就是a~b的lca和c~d的lca的最小公共祖先
所以考虑用线段树解决查询问题 hhh-2016-08-08 16:58:09
*/
#pragma comment(linker,"/STACK:1024000000,1024000000")
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <functional>
#include <map>
#include <queue>
#include <vector>
#include <set>
#define lson (i<<1)
#define rson ((i<<1)|1)
using namespace std;
typedef long long ll;
const int maxn=300000 + 500;
const int INF=0x3f3f3f3f;
const int mod = 1e9+7;
int n,tot,cnt;
int head[maxn],rmq[maxn];
int flag[maxn];
int vis[maxn];
int P[maxn];
int F[maxn<<1]; struct Edge
{
int from,to,next;
} edge[maxn << 1]; int fin(int x)
{
if(F[x] == -1) return x;
return F[x] = fin(F[x]);
} void unio(int a,int b)
{
int ta= fin(a);
int tb= fin(b);
if(ta != tb)
F[ta] = tb;
} void add_edge(int u,int v)
{
edge[tot].from = u,edge[tot].to = v,edge[tot].next=head[u],head[u] = tot++;
} struct ST
{
int m[maxn << 1];
int dp[maxn << 1][20];
void ini(int n)
{
m[0] = -1;
for(int i = 1; i <= n; i++)
{
m[i] = ((i&(i-1)) == 0)? m[i-1]+1:m[i-1];
dp[i][0] = i;
}
for(int j = 1; j <= m[n]; j++)
{
for(int i = 1; i+(1<<j)-1 <= n; i++)
dp[i][j] = rmq[dp[i][j-1]] < rmq[dp[i+(1<<(j-1))][j-1]] ?
dp[i][j-1] : dp[i+(1 << (j-1))][j-1];
}
}
int query(int a,int b)
{
if(a > b)
swap(a,b);
int k = m[b-a+1];
return rmq[dp[a][k]] <= rmq[dp[b-(1<<k)+1][k]] ?
dp[a][k]:dp[b-(1<<k)+1][k];
}
}; ST st; void dfs(int u,int pre,int dep)
{
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt; for(int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].to;
if(v == pre)
continue;
dfs(v,u,dep+1);
F[++cnt] = u;
rmq[cnt] = dep;
}
} int query_lca(int a,int b)
{
return F[st.query(P[a],P[b])];
}
void ini()
{
memset(flag,0,sizeof(flag));
memset(head,-1,sizeof(head));
tot =0;
cnt = 0;
} struct node
{
int l,r;
int lca;
int mid()
{
return (l+r)>>1;
}
} tree[maxn << 2]; void push_up(int i)
{
tree[i].lca = query_lca(tree[lson].lca,tree[rson].lca);
// cout << tree[lson].lca << " " <<tree[rson].lca <<endl;
// cout << tree[i].l<< " " << tree[i].r << " " <<tree[i].lca <<endl;
} void build(int i,int l,int r)
{
tree[i].l = l,tree[i].r = r;
if(l == r)
{
tree[i].lca = l;
// cout << tree[i].l<< " " << tree[i].r << " " <<tree[i].lca <<endl;
return ;
}
int mid = tree[i].mid();
build(lson,l,mid);
build(rson,mid+1,r);
push_up(i);
} int query(int i,int l,int r)
{
if(tree[i].l >= l && tree[i].r <= r)
{
return tree[i].lca;
}
int mid = tree[i].mid();
if(r <= mid)
return query(lson,l,r);
else if(l > mid)
return query(rson,l,r);
else
return query_lca(query(lson,l,mid),query(rson,mid+1,r));
push_up(i);
} int main()
{
int n,m,k;
int a,b,c;
// freopen("in.txt","r",stdin);
while(scanf("%d",&n) != EOF)
{
ini(); for(int i = 1; i < n; i++)
{
scanf("%d%d",&a,&b);
add_edge(b,a);
add_edge(a,b);
flag[b] = 1;
}
dfs(1,1,0);
st.ini(2*n-1);
scanf("%d",&m);
build(1,1,n);
// printf("1 2 %d\n",query_lca(1,2));
for(int i = 1; i <= m; i++)
{
scanf("%d%d",&a,&b);
printf("%d\n",query(1,a,b));
//printf("%d\n",query_lca(a,b));
}
}
return 0;
}

  

hdu 5266 pog loves szh III(lca + 线段树)的更多相关文章

  1. HDU 5266 pog loves szh III ( LCA + SegTree||RMQ )

    pog loves szh III Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Oth ...

  2. HDU 5266 pog loves szh III (LCA)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5266 题目就是让你求LCA,模版题.注意dfs会栈溢出,所以要扩栈,或者用bfs写. #pragma ...

  3. HDU 5266 pog loves szh III(区间LCA)

    题目链接 pog loves szh III 题意就是  求一个区间所有点的$LCA$. 我们把$1$到$n$的$DFS$序全部求出来……然后设$i$的$DFS$序为$c[i]$,$pc[i]$为$c ...

  4. HDU 5266 pog loves szh III 线段树,lca

    Pog and Szh are playing games. Firstly Pog draw a tree on the paper. Here we define 1 as the root of ...

  5. HDU 5266 pog loves szh III (线段树+在线LCA转RMQ)

    题目地址:HDU 5266 这题用转RMQ求LCA的方法来做的很easy,仅仅须要找到l-r区间内的dfs序最大的和最小的就能够.那么用线段树或者RMQ维护一下区间最值就能够了.然后就是找dfs序最大 ...

  6. HDU 5266 pog loves szh III

    题意:给出一棵树,1为根节点,求一段区间内所有点的最近公共祖先. 解法:用一棵线段树维护区间LCA.LCA是dp做法.dp[i][j]表示点i的第2^j个祖先是谁,转移方程为dp[i][j] = dp ...

  7. HDU5266---pog loves szh III (线段树+LCA)

    题意:N个点的有向树, Q次询问, 每次询问区间[L, R]内所有点的LCA. 大致做法:线段树每个点保存它的孩子的LCA值, 对于每一次询问只需要 在线段树查询即可. #include <bi ...

  8. hdu 5265 pog loves szh II

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5265 pog loves szh II Description Pog and Szh are pla ...

  9. hdu 5264 pog loves szh I

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5264 pog loves szh I Description Pog has lots of stri ...

随机推荐

  1. Mongodb中 Documents文档说明

    mongodb使用BSON格式存储数据记录. 如下图: 文档结构 文档有键值对组成, 有以下结构: {    field1: value1,    field2: value2,    ...     ...

  2. python之路--day10-闭包函数

    1.命名关键字参数 格式:在*后面的参数都是命名关键字参数 特点: 1.必须被传值 2.约束函数的调用者必须按照key=value的形式传值 3.约束函数的调用者必须用我们指定的key名 def au ...

  3. 美团点餐—listview内部按钮点击事件

    PS:长时间不写博客了,今天来写一下美团的这个点餐界面,今天先写一个加号减号的接口调用,下一篇是整体,有点菜,评价,商家,还有左边的listview和右边的展示项.进入这篇正题,像listview,G ...

  4. href的理解

    您搜索的项目暂未上线,可直接<a style="color: #ff0000;" onclick="onlineTalk();" href="j ...

  5. React Native学习(九)—— 使用Flexbox布局

    本文基于React Native 0.52 Demo上传到Git了,有需要可以看看,写了新内容会上传的.Git地址 https://github.com/gingerJY/React-Native-D ...

  6. 新概念英语(1-23)Which glasses?

    Which glasses does the man want? A:Give me some glasses please, Jane? B:Which glasses? These glasses ...

  7. python Django学生管理

    Django 学生管理系统 1. 一对一 班级  模态增加 编辑 <!DOCTYPE html> <html lang="en"> <head> ...

  8. hdu-3348 coins---贪心

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3348 题目大意: 给你一个价格,还有面值分别为1,5,10,50,100(单位:毛)纸币的数量,要你 ...

  9. 使用LINGO来解决0/1背包算法问题

    1.问题说明 0/1背包问题:我们有n种物品,物品j的重量为wj,价格为pj.我们假定所有物品的重量和价格都是非负的.背包所能承受的最大重量为W.如果限定每种物品只能选择0个或1个,则问题称为0-1背 ...

  10. 面向面试题和实际使用谈promise

    "金三银四,金九银十",都是要收获的季节.面对各种面试题,各种概念.原理都要去记,挺枯燥的.本文是面向面试题和实际使用谈一下Promise. Promise是什么? Promise ...