除法取模练习(51nod 1119 & 1013 )
思路:求C(m+n-2,n-1) % 10^9 +7 (2<=m,n<= 1000000)
在求组合数时,一般都通过双重for循环c[i][j] = c[i-1][j] + c[i-1][j-1]直接得到。
但是m,n都很大时,就会超时。
利用公式:C(n,r) = n! / r! *(n-r)! 与 a/b = x(mod M) -> a * (b ^ (M-2)) =x (mod M) 进行求解
费马小定理:对于素数 M 任意不是 M 的倍数的 b,都有:b ^ (M-1) = 1 (mod M)
a/b = x(mod M) -> a * (b ^ (M-2)) =x (mod M)的推导:
只要 M 是一个素数,而且 b 不是 M 的倍数,就可以用一个逆元整数 b’,通过 a / b = a * b' (mod M),来以乘换除。
a/b = x(mod M)
a / b = a / b * (b ^ (M-1)) = a * (b ^ (M-2)) = x(mod M)
而b ^ (M-2) mod M 就是逆元整数 b`。
所以最终要求的 x = n! *[r! *(n-r)!]^(M-2) (mod M)
#include <cstdio>
#include <string> const int mod = ;
const int maxN = 1e6;
long long c[maxN* +];
int m,n; void init(){
c[] = ;
c[] = ;
for(int i =; i <= maxN*+; i++)
c[i+] = (c[i] *(i+) ) % mod;
}
int main(){
init();
while(~scanf("%d%d",&n,&m))
{
long long ans = c[n - + m - ];
ans = (ans * pow(c[n-],mod - )) % mod;
ans = (ans * pow(c[m - ] ,mod - )) % mod;
printf("%lld\n",ans);
}
return ;
}
题目:1013 3的幂的和
思路:用公式求 等比数列 % 10^9+7
这仍旧是除法取模;
sn=(a1(q^n-1))/(q-1) % M = (a1(q^n-1))*(q-1)^ (M -1) % M;
#include <iostream> using namespace std; const int mod = 1e9+; long long pow(long long n,long long m)
{
long long ans = ;
while(m > )
{
if(m & )ans = (ans * n) % mod;
m = m >> ;
n = (n * n) % mod;
}
return ans;
} int main()
{
int n;
cin >>n;
cout<< ((pow(, n+)-)*pow(, mod-))%mod<<endl;
return ;
}
除法取模练习(51nod 1119 & 1013 )的更多相关文章
- 51nod 1013 3的幂的和 - 快速幂&除法取模
题目地址:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1013 Konwledge Point: 快速幂:https:/ ...
- 51nod1119(除法取模)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 题意:中文题诶- 思路:这题数据比较大直接暴力肯定是不 ...
- 51nod1119(除法取模/费马小定理求组合数)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 题意:中文题诶- 思路:这题数据比较大直接暴力肯定是不 ...
- HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)
传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...
- Re.多项式除法/取模
前言 emmm又是暂无 前置 多项式求逆 多项式除法/取模目的 还是跟之前一样顾名思义] 给定一个多项式F(x),请求出多项式Q(x)和R(x),满足F(x)=Q(x)∗G(x)+R(x),R项数小于 ...
- hdu 3037 费马小定理+逆元除法取模+Lucas定理
组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马 ...
- 快速幂取模模板 && 51nod 1013 3的幂的和
#include <iostream> #include <cstdio> #include <cmath> #include <vector> #in ...
- HDU 4633 Who's Aunt Zhang ★(Polya定理 + 除法取模)
题意 用K个颜色给魔方染色,魔方只能整体旋转并且旋转重合的方案算一种,求一共有多少不同的染色方案. 思路 经典的Polya应用,记住正六面体的置换群就可以了,魔方就是每个大面变成9个小面了而已: 本题 ...
- 组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...
随机推荐
- 批量部署ssh信任关系
要求1:大批量部署SSH信任关系,在A文件分发服务器上大批量部署WEB层面信任关系文件分发服务器为:10.0.3.9 登录用户为:zhangsan WEB层IP段:10.0.3.10~10.0.3.6 ...
- mysql5.8安装指南
一.安装mysql yum源 从官网http://dev.mysql.com/downloads/repo/yum/下载mysql最新的yum源的rpm安装包 wget http://repo.mys ...
- IIS发布项目 遇到的error
HTTP 错误 403.14 - Forbidden Web 服务器被配置为不列出此目录的内容. 重新注册一下.net framework试试,当然这一步骤也可以排在第一位. 32位的Windows: ...
- dataguru(炼数成金)大数据培训基地印象
dataguru访问地址:http://f.dataguru.cn/?fromuid=99611 课程优惠码:C4B6 这段时间一直在dataguru(炼数成金)上学习<hadoop数据分析平 ...
- java环境基础步骤 svn
eclipse里安装SVN插件,一般来说,有两种方式: 直接下载SVN插件,将其解压到eclipse的对应目录里 使用eclipse 里Help菜单的"Install New Softwar ...
- Spring Framework------>version4.3.5.RELAESE----->Reference Documentation学习心得----->Spring Framework的依赖注入和控制反转
Dependency Injection and Inversion of Control 1.概述: 1.1相关概念 bean:由IoC容器所管理的对象,也即各个类实例化所得对象都叫做bean 控制 ...
- C++STL学习笔记_(1)deque双端数组知识
#include<iostream> using namespace std; #include "deque" #include "algorithm&qu ...
- CSS中定位机制的想法
对于一个刚刚接触css的新手而言,CSS的定位机制可能是最让人头疼的一件事情了, 接下来我们了解一下CSS的定位机制. position:static | relative | absolute | ...
- 调用别人提供的WebService
在开发过程中,许多时候需要使用到别人提供的WebService接口,使用其中的方法. 在调用别人提供的接口时,会得到接口使用的文档,其中包括接口的网络地址及方法作用等. 找到WebService的ws ...
- linux crontab
概念: Linux 工作排程的种类:at, cron at 是个可以处理仅执行一次就结束排程的指令,不过要执行 at 时, 必须要有 atd 这个服务支持. crontab 这个指令所设定的工作将会循 ...