// ... literals are interned by the compiler
// and thus refer to the same object
String s1 = "abcd";
String s2 = "abcd";
s1 == s2; // --> true // ... These two have the same value
// but they are not the same object
String s1 = new String("abcd");
String s2 = new String("abcd");
s1 == s2; // --> false

看上面一段代码,我们会发生疑惑:为什么通过字符串常量实例化的String类型对象是一样的,而通过new所创建String对象却不一样呢?且看下面分解。

1. 数据存储区

String是一个比较特殊的类,除了new之外,还可以用字面常量来定义。为了弄清楚这二者间的区别,首先我们得明白JVM运行时数据存储区,这里有一张图对此有清晰的描述:

非共享数据存储区

非共享数据存储区是在线程启动时被创建的,包括:

  • 程序计数器(program counter register)控制线程的执行;
  • 栈(JVM Stack, Native Method Stack)存储方法调用与对象的引用等。

共享数据存储区

该存储区被所有线程所共享,可分为:

  • 堆(Heap)存储所有的Java对象,当执行new对象时,会在堆里自动进行内存分配。
  • 方法区(Method Area)存储常量池(run-time constant pool)、字段与方法的数据、方法与构造器的代码。

2. 两种实例化

实例化String对象:

public class StringLiterals {
public static void main(String[] args) {
String one = "Test";
String two = "Test";
String three = "T" + "e" + "s" + "t";
String four = new String("Test");
}
}

javap -c StringLiterals反编译生成字节码,我们选取感兴趣的部分如下:

  public static void main(java.lang.String[]);
Code:
0: ldc #2 // String Test
2: astore_1
3: ldc #2 // String Test
5: astore_2
6: ldc #2 // String Test
8: astore_3
9: new #3 // class java/lang/String
12: dup
13: ldc #2 // String Test
15: invokespecial #4 // Method java/lang/String."<init>": (Ljava/lang/String;)V
18: astore 4
20: return
}

ldc #2表示从常量池中取#2的常量入栈,astore_1表示将引用存在本地变量1中。因此,我们可以看出:对象onetwothree均指向常量池中的字面常量"Test";对象four是在堆中new的新对象;如下图所示:

总结如下:

  • 当用字面常量实例化时,String对象存储在常量池;
  • 当用new实例化时,String对象存储在堆中;

操作符==比较的是对象的引用,当其指向的对象不同时,则为false。因此,开篇中的代码会出现通过new所创建String对象不一样。

3. 不可变String

String源码

JDK7的String类:

public final class String
implements java.io.Serializable, Comparable<String>, CharSequence {
/** The value is used for character storage. */
private final char value[]; /** Cache the hash code for the string */
private int hash; // Default to 0
}

String类被声明为final,不可以被继承,所有的方法隐式地指定为final,因为无法被覆盖。字段char value[]表示String类所对应的字符串,被声明为private final;即初始化后不能被修改。常用的new实例化对象String s1 = new String("abcd");的构造器:

public String(String original) {
this.value = original.value;
this.hash = original.hash;
}

只需将value与hash的字段值进行传递即可。

不可变性

所谓不可变性(immutability)指类不可以通过常用的API被修改。为了更好地理解不可变性,我们先来看《Thinking in Java》中的一段代码:

//: operators/Assignment.java
// Assignment with objects is a bit tricky.
import static net.mindview.util.Print.*; class Tank {
int level;
} public class Assignment {
public static void main(String[] args) {
Tank t1 = new Tank();
Tank t2 = new Tank();
t1.level = 9;
t2.level = 47;
print("1: t1.level: " + t1.level +
", t2.level: " + t2.level);
t1 = t2;
print("2: t1.level: " + t1.level +
", t2.level: " + t2.level);
t1.level = 27;
print("3: t1.level: " + t1.level +
", t2.level: " + t2.level);
}
} /* Output:
1: t1.level: 9, t2.level: 47
2: t1.level: 47, t2.level: 47
3: t1.level: 27, t2.level: 27
*///:~

上述代码中,在赋值操作t1 = t2;之后,t1、t2包含的是相同的引用,指向同一个对象。因此对t1对象的修改,直接影响了t2对象的字段改变。显然,Tank类是可变的。

也许,有人会说s = s.concat("ef");不是修改了对象s么?而事实上,我们去看concat的实现,会发现其返回的是新String对象(return new String(buf, true););改变的只是s1引用所指向的对象,如下图所示:

4. 反射

String的value字段是final的,可不可以通过过某种方式修改呢?答案是反射。在stackoverflow上有这样一段修改value字段的代码:

String s1 = "Hello World";
String s2 = "Hello World";
String s3 = s1.substring(6);
System.out.println(s1); // Hello World
System.out.println(s2); // Hello World
System.out.println(s3); // World Field field = String.class.getDeclaredField("value");
field.setAccessible(true);
char[] value = (char[])field.get(s1);
value[6] = 'J';
value[7] = 'a';
value[8] = 'v';
value[9] = 'a';
value[10] = '!'; System.out.println(s1); // Hello Java!
System.out.println(s2); // Hello Java!
System.out.println(s3); // World

在上述代码中,为什么对象s2的值也会被修改,而对象s3的值却不会呢?根据前面的介绍,s1与s2指向同一个对象;所以当s1被修改后,s2也会对应地被修改。至于s3对象为什么不会?我们来看看substring()的实现:

public String substring(int beginIndex) {
if (beginIndex < 0) {
throw new StringIndexOutOfBoundsException(beginIndex);
}
int subLen = value.length - beginIndex;
if (subLen < 0) {
throw new StringIndexOutOfBoundsException(subLen);
}
return (beginIndex == 0) ? this : new String(value, beginIndex, subLen);
}

当beginIndex不为0时,返回的是new的String对象;当beginIndex为0时,返回的是原对象本身。如果将String s3 = s1.substring(6);改为String s3 = s1.substring(0);,那么对象s3也会被修改了。

如果仔细看java.lang.String.java,我们会发现:当需要改变字符串内容时,String类的方法返回的是新String对象;如果没有改变,String类的方法则返回原对象引用。这节省了存储空间与额外的开销。

5. 参考资料

[1] Programcreek, JVM Run-Time Data Areas.

[2] Corey McGlone, Looking "Under the Hood" with javap.

[3] Programcreek, Diagram to show Java String’s Immutability.

[4] Stackoverflow, Is a Java string really immutable?

[5] Programcreek, Why String is immutable in Java ?

【JDK源码分析】String的存储区与不可变性的更多相关文章

  1. JDK源码分析-String、StringBuilder、StringBuffer

    String类的申明 public final class String implements java.io.Serializable, Comparable<String>, Char ...

  2. JDK源码分析(一)—— String

    dir 参考文档 JDK源码分析(1)之 String 相关

  3. JDK源码分析—— ArrayBlockingQueue 和 LinkedBlockingQueue

    JDK源码分析—— ArrayBlockingQueue 和 LinkedBlockingQueue 目的:本文通过分析JDK源码来对比ArrayBlockingQueue 和LinkedBlocki ...

  4. java-通过 HashMap、HashSet 的源码分析其 Hash 存储机制

    通过 HashMap.HashSet 的源码分析其 Hash 存储机制 集合和引用 就像引用类型的数组一样,当我们把 Java 对象放入数组之时,并非真正的把 Java 对象放入数组中.仅仅是把对象的 ...

  5. 【JDK】JDK源码分析-LinkedHashMap

    概述 前文「JDK源码分析-HashMap(1)」分析了 HashMap 主要方法的实现原理(其他问题以后分析),本文分析下 LinkedHashMap. 先看一下 LinkedHashMap 的类继 ...

  6. 【JDK】JDK源码分析-Vector

    概述 上文「JDK源码分析-ArrayList」主要分析了 ArrayList 的实现原理.本文分析 List 接口的另一个实现类:Vector. Vector 的内部实现与 ArrayList 类似 ...

  7. 【JDK】JDK源码分析-ArrayList

    概述 ArrayList 是 List 接口的一个实现类,也是 Java 中最常用的容器实现类之一,可以把它理解为「可变数组」. 我们知道,Java 中的数组初始化时需要指定长度,而且指定后不能改变. ...

  8. 【JDK】JDK源码分析-Semaphore

    概述 Semaphore 是并发包中的一个工具类,可理解为信号量.通常可以作为限流器使用,即限制访问某个资源的线程个数,比如用于限制连接池的连接数. 打个通俗的比方,可以把 Semaphore 理解为 ...

  9. 【JDK】JDK源码分析-HashMap(2)

    前文「JDK源码分析-HashMap(1)」分析了 HashMap 的内部结构和主要方法的实现原理.但是,面试中通常还会问到很多其他的问题,本文简要分析下常见的一些问题. 这里再贴一下 HashMap ...

  10. JDK源码学习--String篇(二) 关于String采用final修饰的思考

    JDK源码学习String篇中,有一处错误,String类用final[不能被改变的]修饰,而我却写成静态的,感谢CTO-淼淼的指正. 风一样的码农提出的String为何采用final的设计,阅读JD ...

随机推荐

  1. .Net Core CLI在CentOS7的安装及使用简介

    1. 安装libunwind cd /usr/local/src wget http://download.savannah.gnu.org/releases/libunwind/libunwind- ...

  2. Aoite 系列 目录

    介绍 本项目从2009年孵化(V->Sofire->Aoite),至今已度过5个年头.一直在优化,一直在重构,一直在商用.有十分完整的单元测试用例.可以放心使用. Aoite on 博客园 ...

  3. vpn establish capability from a remote deskstop is disabled错误的解决办法

    使用Cisco的VPN时,有时候会提示vpn establish capability from a remote deskstop is disabled.这样的错误,解决办法就是重启本机的Remo ...

  4. redis(二)高级用法

    redis(二)高级用法 事务 redis的事务是一组命令的集合.事务同命令一样都是redis的最小执行单元,一个事务中的命令要么执行要么都不执行. 首先需要multi命令来开始事务,用exec命令来 ...

  5. MooseFS学习-概述

    MFS(MooseFS)是一个容错的.网络分布式文件系统,是GFS的开源实现.它把数据分散在多个物理机上,对外展现为一个整体资源. 支持的功能 Unix的通用文件系统功能:目录树:记录POSIX文件属 ...

  6. Javascript模块化编程笔记

    最近在读阮一峰的博客http://www.ruanyifeng.com/blog/2012/10/javascript_module.html,随手记录一些重要笔记.  Javascript模块的雏形 ...

  7. Node.js与Sails~Model数据模型

    回到目录 对于Sails来说,它的Model与数据库对应,不过它并没有采用目前比较流行的poco贫血模型,而是采用了类似DDD的充血模型,即它的数据实体里即有数据库字段(属性)而且还有方法,而模型里的 ...

  8. 第1讲 Redis部署与基本操作

    目录 一.简介 二.安装 1.默认安装位置 2.指定安装位置 3.安装的可执行文件的作用 三.启动与关闭 四.配置文件 五.Redis的数据类型 1. 共计5种类型 2. String(子串类型) 3 ...

  9. Nodejs·理解Buffer

    Node里面的Buffer其实就是用于网络请求.文件读取等等操作,而且是分配在堆外,不会占用堆内的内存,这也是因为本来V8的内存就很小,如果读取大文件,那就...... 之前有看过Logstash的B ...

  10. Atitit   图像处理 平滑 也称 模糊, 归一化块滤波、高斯滤波、中值滤波、双边滤波)

    Atitit   图像处理 平滑 也称 模糊, 归一化块滤波.高斯滤波.中值滤波.双边滤波) 是一项简单且使用频率很高的图像处理方法 用途 去噪 去雾 各种线性滤波器对图像进行平滑处理,相关OpenC ...