matadata:

hadoop  a
spark a
hive a
hbase a
tachyon a
storm a
redis a

自定义分组

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; public class MyGroup {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if(otherArgs.length!=2){
System.err.println("Usage databaseV1 <inputpath> <outputpath>");
} Job job = Job.getInstance(conf, MyGroup.class.getSimpleName() + "1");
job.setJarByClass(MyGroup.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setMapperClass(MyMapper1.class);
job.setGroupingComparatorClass(MyGroupComparator.class);
job.setReducerClass(MyReducer1.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
job.waitForCompletion(true);
}
public static class MyMapper1 extends Mapper<LongWritable, Text, Text, Text>{
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
String[] spl=value.toString().split("\t");
context.write(new Text(spl[0].trim()), new Text(spl[1].trim()));
}
}
public static class MyReducer1 extends Reducer<Text, Text, Text, Text>{
@Override
protected void reduce(Text k2, Iterable<Text> v2s, Reducer<Text, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
Long count=0L;
for (@SuppressWarnings("unused") Text v2 : v2s) {
count++;
context.write(new Text("in--"+k2), new Text(count.toString()));
}
context.write(new Text("out--"+k2), new Text(count.toString()));
}
}
public static class MyGroupComparator extends WritableComparator{
public MyGroupComparator(){
super(Text.class,true);
}
@SuppressWarnings("rawtypes")
public int compare(WritableComparable a, WritableComparable b) {
Text p1 = (Text) a;
Text p2 = (Text) b;
p1.compareTo(p2);
return 0;
}
}
}

结果

in--hadoop      1
in--hbase 2
in--hive 3
in--redis 4
in--spark 5
in--storm 6
in--tachyon 7
out--tachyon 7

然后看下默认分组

public static class MyGroupComparator extends WritableComparator{
public MyGroupComparator(){
super(Text.class,true);
}
@SuppressWarnings("rawtypes")
public int compare(WritableComparable a, WritableComparable b) {
Text p1 = (Text) a;
Text p2 = (Text) b;
return p1.compareTo(p2);
}
}

结果

in--hadoop      1
out--hadoop 1
in--hbase 1
out--hbase 1
in--hive 1
out--hive 1
in--redis 1
out--redis 1
in--spark 1
out--spark 1
in--storm 1
out--storm 1
in--tachyon 1
out--tachyon 1

通过对比,自定义分组就很容易理解了

Hadoop自定义分组Group的更多相关文章

  1. 2 weekend110的hadoop的自定义排序实现 + mr程序中自定义分组的实现

    我想得到按流量来排序,而且还是倒序,怎么达到实现呢? 达到下面这种效果, 默认是根据key来排, 我想根据value里的某个排, 解决思路:将value里的某个,放到key里去,然后来排 下面,开始w ...

  2. Hadoop mapreduce自定义分组RawComparator

    本文发表于本人博客. 今天接着上次[Hadoop mapreduce自定义排序WritableComparable]文章写,按照顺序那么这次应该是讲解自定义分组如何实现,关于操作顺序在这里不多说了,需 ...

  3. 【Hadoop】Hadoop MR 自定义分组 Partition机制

    1.概念 2.Hadoop默认分组机制--所有的Key分到一个组,一个Reduce任务处理 3.代码示例 FlowBean package com.ares.hadoop.mr.flowgroup; ...

  4. 关于MapReduce中自定义分组类(三)

    Job类  /**    * Define the comparator that controls which keys are grouped together    * for a single ...

  5. Table.Group分组…Group(Power Query 之 M 语言)

    数据源: 10列55行数据,其中包括含有重复项的"部门"列和可求和的"金额"列. 目标: 按"部门"列进行分组,显示各部门金额小计. 操作过 ...

  6. Oracle 表分组 group by和模糊查询like

    分组group by写法 select 字段名 from 表名 group by 字段名 查询这个字段名里的种类分组后可以加聚合函数select 字段名,聚合函数 from 表名 group by 字 ...

  7. 大数据量场景下storm自定义分组与Hbase预分区完美结合大幅度节省内存空间

    前言:在系统中向hbase中插入数据时,常常通过设置region的预分区来防止大数据量插入的热点问题,提高数据插入的效率,同时可以减少当数据猛增时由于Region split带来的资源消耗.大量的预分 ...

  8. storm自定义分组与Hbase预分区结合节省内存消耗

    Hbas预分区 在系统中向hbase中插入数据时,常常通过设置region的预分区来防止大数据量插入的热点问题,提高数据插入的效率,同时可以减少当数据猛增时由于Region split带来的资源消耗. ...

  9. MySQL数据分组Group By 和 Having

    现有以下的学生信息表: 若果现在想计算每个班的平均年龄,使用where的操作如下: SELECT Cno AS 班级, AVG(Sage) AS 平均年龄 FROM stu ; 这样的话,有多少个班就 ...

随机推荐

  1. Telerik UI For WinForms--关于RadGridView的列排序

    在使用RadGridView绑定数据后,我希望属性的显示顺序按继承层次显示,但实际是相反的.下面示例两个类: public class A { public string Astr { get; se ...

  2. vim 使用说明

    =========================================================本使用说明与 把VIM打造成IDE 配套======================= ...

  3. Scalaz(10)- Monad:就是一种函数式编程模式-a design pattern

    Monad typeclass不是一种类型,而是一种程序设计模式(design pattern),是泛函编程中最重要的编程概念,因而很多行内人把FP又称为Monadic Programming.这其中 ...

  4. pm2 配置

    ---恢复内容开始--- 1. ecosystem.json { "apps": [ { "name": "name", // 项目名 &q ...

  5. viewport ——视区概念,为 自适应网页设计

    什么是Viewport 手机浏览器是把页面放在一个虚拟的“窗口”(viewport)中,通常这个虚拟的“窗口”(viewport)比屏幕宽,这样就不用把每个网页挤到很小的窗口中(这样会破坏没有针对手机 ...

  6. spring MVC @Resource不支持Lazy加载

    今天迁一系统时发现有个bean使用@Resource注入了另外一个bean,这个被注入的bean是将被deprecated的类,而且只有一两个功能使用到,为了先调整进行测试,增加了@Lazy注解,启动 ...

  7. 【转】从MVC到前后端分离

    1. 理解MVC MVC是一种经典的设计模式,全名为Model-View-Controller,即模型-视图-控制器. 其中,模型是用于封装数据的载体,例如,在Java中一般通过一个简单的POJO(P ...

  8. jQuery+fullPage.js演示10种全屏滚动

    基本演示 背景演示 循环演示 回调函数演示 绑定菜单演示 项目导航演示 自动滚动 slide自动滚动 响应式 下载地址 实例代码 <!DOCTYPE html> <html lang ...

  9. 赞!jsPDF – 基于 HTML5 的强大 PDF 生成工具

    jsPDF 是一个基于 HTML5 的客户端解决方案,用于生成各种用途的 PDF 文档.使用方法很简单,只要引入 jsPDF 库,然后调用内置的方法就可以了.浏览器兼容性: IE 10, Firefo ...

  10. 完美卸载oracle11g步骤

    完美卸载oracle11g步骤:1. 开始->设置->控制面板->管理工具->服务 停止所有Oracle服务.2. 开始->程序->Oracle - OraHome ...