codeforces 85D D. Sum of Medians 线段树
3 seconds
256 megabytes
standard input
standard output
In one well-known algorithm of finding the k-th order statistics we should divide all elements into groups of five consecutive elements and find the median of each five. A median is called the middle element of a sorted array (it's the third largest element for a group of five). To increase the algorithm's performance speed on a modern video card, you should be able to find a sum of medians in each five of the array.
A sum of medians of a sorted k-element set S = {a1, a2, ..., ak}, where a1 < a2 < a3 < ... < ak, will be understood by as
The operator stands for taking the remainder, that is stands for the remainder of dividing x by y.
To organize exercise testing quickly calculating the sum of medians for a changing set was needed.
The first line contains number n (1 ≤ n ≤ 105), the number of operations performed.
Then each of n lines contains the description of one of the three operations:
- add x — add the element x to the set;
- del x — delete the element x from the set;
- sum — find the sum of medians of the set.
For any add x operation it is true that the element x is not included in the set directly before the operation.
For any del x operation it is true that the element x is included in the set directly before the operation.
All the numbers in the input are positive integers, not exceeding 109.
For each operation sum print on the single line the sum of medians of the current set. If the set is empty, print 0.
Please, do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams (also you may use the %I64d specificator).
6
add 4
add 5
add 1
add 2
add 3
sum
3
14
add 1
add 7
add 2
add 5
sum
add 6
add 8
add 9
add 3
add 4
add 10
sum
del 1
sum
5
11
13
#include<bits/stdc++.h>
using namespace std;
#define ll unsigned long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x) cout<<"bug"<<x<<endl;
const int N=2e5+,M=1e6+,inf=1e9+;
const ll INF=1e18+,mod=;
int n,tree[N];
int lowbit(int x)
{
return x&-x;
}
void update(int x,int c)
{
while(x<1e5+)
{
tree[x]+=c;
x+=lowbit(x);
}
}
int getsum(int x)
{
int sum=;
while(x>)
{
sum+=tree[x];
x-=lowbit(x);
}
return sum;
}
struct is
{
int lazy;
ll ans[];
}a[N<<];
ll temp[];
void pushup(int pos)
{
for(int i=;i<;i++)
a[pos].ans[i]=a[pos<<].ans[i]+a[pos<<|].ans[i];
}
void change(int pos,int x)
{
x=(x%+)%;
int ji=;
for(int i=;i<;i++)
temp[i]=a[pos].ans[i];
for(int i=x;i<;i++)
a[pos].ans[i]=temp[ji++];
for(int i=;i<x;i++)
a[pos].ans[i]=temp[ji++];
}
void pushdown(int pos)
{
if(a[pos].lazy)
{
a[pos<<].lazy+=a[pos].lazy;
a[pos<<|].lazy+=a[pos].lazy;
change(pos<<,a[pos].lazy);
change(pos<<|,a[pos].lazy);
a[pos].lazy=;
}
}
void build(int l,int r,int pos)
{
a[pos].lazy=;
memset(a[pos].ans,,sizeof(a[pos].ans));
if(l==r)return;
int mid=(l+r)>>;
build(l,mid,pos<<);
build(mid+,r,pos<<|);
}
void update(int L,int R,int c,int l,int r,int pos)
{
if(L<=l&&r<=R)
{
a[pos].lazy+=c;
change(pos,c);
return;
}
pushdown(pos);
int mid=(l+r)>>;
if(L<=mid)
update(L,R,c,l,mid,pos<<);
if(R>mid)
update(L,R,c,mid+,r,pos<<|);
pushup(pos);
}
void point(int p,int k,int c,int l,int r,int pos)
{
if(l==r)
{
a[pos].ans[k]+=c;
return;
}
pushdown(pos);
int mid=(l+r)>>;
if(p<=mid)
point(p,k,c,l,mid,pos<<);
else
point(p,k,c,mid+,r,pos<<|);
pushup(pos);
}
char str[N][];
int b[N];
int s[N],cnt;
int getpos(int x)
{
int pos=lower_bound(s+,s++cnt,x)-s;
return pos;
}
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%s",str[i]);
if(str[i][]=='a'||str[i][]=='d')
{
scanf("%d",&b[i]);
s[++cnt]=b[i];
}
}
sort(s+,s++cnt);
cnt=max(,cnt);
build(,cnt,);
for(int i=;i<=n;i++)
{
//cout<<str[i]<<endl;
if(str[i][]=='a')
{
int x=getpos(b[i]);
int now=getsum(x-);
now%=;
//cout<<x<<" "<<now<<" "<<b[i]<<endl;
update(x,);
update(x+,cnt,,,cnt,);
point(x,now,b[i],,cnt,);
}
else if(str[i][]=='d')
{
int x=getpos(b[i]);
int now=getsum(x-);
now%=;
update(x,-);
point(x,now,-b[i],,cnt,);
update(x+,cnt,-,,cnt,);
}
else
printf("%lld\n",a[].ans[]);
//printf("%lld\n",a[1].ans[2]);
}
return ;
}
codeforces 85D D. Sum of Medians 线段树的更多相关文章
- codeforces 1217E E. Sum Queries? (线段树
codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...
- Codeforces 85D Sum of Medians(线段树)
题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...
- Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树
题目链接: Sum of Medians Time Limit:3000MSMemory Limit:262144KB 问题描述 In one well-known algorithm of find ...
- codeforces 85D D. Sum of Medians Vector的妙用
D. Sum of Medians Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/prob ...
- [Codeforces 266E]More Queries to Array...(线段树+二项式定理)
[Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...
- 【Educational Codeforces Round 37】F. SUM and REPLACE 线段树+线性筛
题意 给定序列$a_n$,每次将$[L,R]$区间内的数$a_i$替换为$d(a_i)$,或者询问区间和 这题和区间开方有相同的操作 对于$a_i \in (1,10^6)$,$10$次$d(a_i) ...
- Codeforces Gym 100513F F. Ilya Muromets 线段树
F. Ilya Muromets Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100513/probl ...
- codeforces 1017C - Cloud Computing 权值线段树 差分 贪心
https://codeforces.com/problemset/problem/1070/C 题意: 有很多活动,每个活动可以在天数为$[l,r]$时,提供$C$个价格为$P$的商品 现在从第一天 ...
- Codeforces 1045. A. Last chance(网络流 + 线段树优化建边)
题意 给你 \(n\) 个武器,\(m\) 个敌人,问你最多消灭多少个敌人,并输出方案. 总共有三种武器. SQL 火箭 - 能消灭给你集合中的一个敌人 \(\sum |S| \le 100000\) ...
随机推荐
- iOS - UIButton设置文字标题下划线以及下划线颜色
创建button设置可以折行显示 - (void)viewDidLoad { [super viewDidLoad]; UIButton * button = [[UIButton alloc] in ...
- jquery easyui-datagrid/treegrid 清空数据参考
在使用easyui的treegrid或datagrid的过程经常会有这样的场景,如:需要按不同的类型加载数据时,如果选择的分类下没有数据应该把上次展示的数据清空,以免引用歧义.下面给出两种方法供初学者 ...
- leetcode pow(x,n)实现
题目描述: 自己实现pow(double x, int n)方法 实现思路: 考虑位运算.考虑n的二进制表示形式,以n=51(110011)为例,x^51 = x^1*x^2*x^16*x^32,因此 ...
- c语言第8次作业
#include<stdio.h> int main() { ]={}; int m; ; ;m<;m++) { a[m]=m+; !=&&a[m]%!=) n++; ...
- android 多媒体数据库(非原创)
推荐文章:http://fzlihui.iteye.com/blog/1097952,http://www.cnblogs.com/pen-ink/archive/2011/06/02/2068410 ...
- DataGridView中实现checkbox全选的自定义控件
在DataGridView中实现Checkbox的全选的方法就是在列头画一个checkbox, 并给其一个事件. 这个之前很多blog都有写, 这里就不多废话了, codeproject上面有示例代 ...
- js 控制Div循环显示 非插件版
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- [Solved]bcdedit.exe文件权限问题
最近在项目开发过程中,要使用到C:\Windows\system32\bcdedit.exe 但是在使用过程中,发现了一个问题.在命令行下面使用bcdedit.exe,如果是以管理员方式运行的命令行就 ...
- python--常见模块
本节大纲: 1.模块介绍 2.time&datetime 3.random. 4.os 5.sys 6.shutil 7.json&picle 8.shelve 9.xml处理 10. ...
- maven项目和普通项目转换