D. Sum of Medians
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

In one well-known algorithm of finding the k-th order statistics we should divide all elements into groups of five consecutive elements and find the median of each five. A median is called the middle element of a sorted array (it's the third largest element for a group of five). To increase the algorithm's performance speed on a modern video card, you should be able to find a sum of medians in each five of the array.

A sum of medians of a sorted k-element set S = {a1, a2, ..., ak}, where a1 < a2 < a3 < ... < ak, will be understood by as

The operator stands for taking the remainder, that is stands for the remainder of dividing x by y.

To organize exercise testing quickly calculating the sum of medians for a changing set was needed.

Input

The first line contains number n (1 ≤ n ≤ 105), the number of operations performed.

Then each of n lines contains the description of one of the three operations:

  • add x — add the element x to the set;
  • del x — delete the element x from the set;
  • sum — find the sum of medians of the set.

For any add x operation it is true that the element x is not included in the set directly before the operation.

For any del x operation it is true that the element x is included in the set directly before the operation.

All the numbers in the input are positive integers, not exceeding 109.

Output

For each operation sum print on the single line the sum of medians of the current set. If the set is empty, print 0.

Please, do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams (also you may use the %I64d specificator).

Examples
Input
6
add 4
add 5
add 1
add 2
add 3
sum
Output
3
Input
14
add 1
add 7
add 2
add 5
sum
add 6
add 8
add 9
add 3
add 4
add 10
sum
del 1
sum
Output
5
11
13
#include<bits/stdc++.h>
using namespace std;
#define ll unsigned long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x) cout<<"bug"<<x<<endl;
const int N=2e5+,M=1e6+,inf=1e9+;
const ll INF=1e18+,mod=;
int n,tree[N];
int lowbit(int x)
{
return x&-x;
}
void update(int x,int c)
{
while(x<1e5+)
{
tree[x]+=c;
x+=lowbit(x);
}
}
int getsum(int x)
{
int sum=;
while(x>)
{
sum+=tree[x];
x-=lowbit(x);
}
return sum;
}
struct is
{
int lazy;
ll ans[];
}a[N<<];
ll temp[];
void pushup(int pos)
{
for(int i=;i<;i++)
a[pos].ans[i]=a[pos<<].ans[i]+a[pos<<|].ans[i];
}
void change(int pos,int x)
{
x=(x%+)%;
int ji=;
for(int i=;i<;i++)
temp[i]=a[pos].ans[i];
for(int i=x;i<;i++)
a[pos].ans[i]=temp[ji++];
for(int i=;i<x;i++)
a[pos].ans[i]=temp[ji++];
}
void pushdown(int pos)
{
if(a[pos].lazy)
{
a[pos<<].lazy+=a[pos].lazy;
a[pos<<|].lazy+=a[pos].lazy;
change(pos<<,a[pos].lazy);
change(pos<<|,a[pos].lazy);
a[pos].lazy=;
}
}
void build(int l,int r,int pos)
{
a[pos].lazy=;
memset(a[pos].ans,,sizeof(a[pos].ans));
if(l==r)return;
int mid=(l+r)>>;
build(l,mid,pos<<);
build(mid+,r,pos<<|);
}
void update(int L,int R,int c,int l,int r,int pos)
{
if(L<=l&&r<=R)
{
a[pos].lazy+=c;
change(pos,c);
return;
}
pushdown(pos);
int mid=(l+r)>>;
if(L<=mid)
update(L,R,c,l,mid,pos<<);
if(R>mid)
update(L,R,c,mid+,r,pos<<|);
pushup(pos);
}
void point(int p,int k,int c,int l,int r,int pos)
{
if(l==r)
{
a[pos].ans[k]+=c;
return;
}
pushdown(pos);
int mid=(l+r)>>;
if(p<=mid)
point(p,k,c,l,mid,pos<<);
else
point(p,k,c,mid+,r,pos<<|);
pushup(pos);
}
char str[N][];
int b[N];
int s[N],cnt;
int getpos(int x)
{
int pos=lower_bound(s+,s++cnt,x)-s;
return pos;
}
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%s",str[i]);
if(str[i][]=='a'||str[i][]=='d')
{
scanf("%d",&b[i]);
s[++cnt]=b[i];
}
}
sort(s+,s++cnt);
cnt=max(,cnt);
build(,cnt,);
for(int i=;i<=n;i++)
{
//cout<<str[i]<<endl;
if(str[i][]=='a')
{
int x=getpos(b[i]);
int now=getsum(x-);
now%=;
//cout<<x<<" "<<now<<" "<<b[i]<<endl;
update(x,);
update(x+,cnt,,,cnt,);
point(x,now,b[i],,cnt,);
}
else if(str[i][]=='d')
{
int x=getpos(b[i]);
int now=getsum(x-);
now%=;
update(x,-);
point(x,now,-b[i],,cnt,);
update(x+,cnt,-,,cnt,);
}
else
printf("%lld\n",a[].ans[]);
//printf("%lld\n",a[1].ans[2]);
}
return ;
}

codeforces 85D D. Sum of Medians 线段树的更多相关文章

  1. codeforces 1217E E. Sum Queries? (线段树

    codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...

  2. Codeforces 85D Sum of Medians(线段树)

    题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...

  3. Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树

    题目链接: Sum of Medians Time Limit:3000MSMemory Limit:262144KB 问题描述 In one well-known algorithm of find ...

  4. codeforces 85D D. Sum of Medians Vector的妙用

    D. Sum of Medians Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/prob ...

  5. [Codeforces 266E]More Queries to Array...(线段树+二项式定理)

    [Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...

  6. 【Educational Codeforces Round 37】F. SUM and REPLACE 线段树+线性筛

    题意 给定序列$a_n$,每次将$[L,R]$区间内的数$a_i$替换为$d(a_i)$,或者询问区间和 这题和区间开方有相同的操作 对于$a_i \in (1,10^6)$,$10$次$d(a_i) ...

  7. Codeforces Gym 100513F F. Ilya Muromets 线段树

    F. Ilya Muromets Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100513/probl ...

  8. codeforces 1017C - Cloud Computing 权值线段树 差分 贪心

    https://codeforces.com/problemset/problem/1070/C 题意: 有很多活动,每个活动可以在天数为$[l,r]$时,提供$C$个价格为$P$的商品 现在从第一天 ...

  9. Codeforces 1045. A. Last chance(网络流 + 线段树优化建边)

    题意 给你 \(n\) 个武器,\(m\) 个敌人,问你最多消灭多少个敌人,并输出方案. 总共有三种武器. SQL 火箭 - 能消灭给你集合中的一个敌人 \(\sum |S| \le 100000\) ...

随机推荐

  1. 由LazyMan联想到的

    LazyMan问题与解法 http://mp.weixin.qq.com/s/drNGvLZddQztcUzSh8OsSw 给出了一道题目,并给出了解法: 题目: 实现一个LazyMan,可以按照以下 ...

  2. jquery选择器和基本语句

    $("#aa"); //根据ID找 $(".aa"); //根据class找 $("div"); //根据标签名找 $("[id= ...

  3. 寿司点餐系统Sprint1总结

    为期十天的一个冲刺,说长不长,说短不短.从一开始的接收课程任务到第一次聚集讨论. 确定方案.实行方案,再到最后的决定结束第一个冲刺,都是大家一起讨论着加小小的默契一步步 向前.没有完美,但是总体完成的 ...

  4. web前端基础知识 Dom

    文档对象模型(Document Object Model,DOM)是一种用于HTML和XML文档的编程接口.它给文档提供了一种结构化的表示方法,可以改变文档的内容和呈现方式.我们最为关心的是,DOM把 ...

  5. Linux 上从 MySQL 迁移到 MariaDB 的简单步骤

    大家好!这是一篇介绍如何在服务器或个人电脑上从MySQL迁移到MariaDB的教程.也许你会问为什么我们要将数据库管理从MySQL迁移到MariaDB.往下看我们告诉你为什么这样做.为什么要用Mari ...

  6. 2.5 C#的数据类型

    在我们定义变量的时候需要使用数据类型,不同数据类型定义的变量,它的值的表现形式不同.比如整型主要表示整数,浮点型表示小数等等. C#中的数据类型有很多同C语言的相同,先学习一些简单的数据类型,其他的以 ...

  7. windows2003 iis php 配置后无法执行php页面

    1.问题:可以访问静态页面,无法访问php脚本页面,显示404 解决:

  8. 《玩转D语言系列》三、轻松大跃进,把它当C语言先用起来

    前面说过,本系列文章的前提是您懂C语言,懂面向对象中的一些概念,如果没有任何变成基础,从零开始学习D语言将是一个漫长的过程,因为很多概念都要重新诠释,让一个没有基础的人经过漫长的学习过程,然后还找不到 ...

  9. webpack模块依赖管理介绍

    http://webpack.github.io/docs/ webpack is a module bundler. 是一个模块管理器 webpack可以管理模块的依赖关系,并产生可以替代这些模块的 ...

  10. Azure Management API 之 利用 Windows Azure Management Libraries 来控制Azure platform

    在此之前,我曾经发过一篇文章讲叙了如何利用Azure power shell team 提供的class library. 而就在这篇文章发布之后不久,我又发现微软发布了一个preview 版本的Wi ...