<span style="font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255);">leetcode第188题,Best Time to Buy and Sell Stock IV题目如下:</span>

https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most k transactions.





Note:

You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

int maxProfit(int k, int prices[], int n)

对题目的分析

股票有涨有落,题目要求在已知未来股票走势情况下,对一支股票进行买卖,取得最大的收入,而且要求用户在卖股票之前必须先买这支股票。
转化成数学问题就是有一个数组,求得最多2k个点,b1,b2,...,bk. s1,s2,...,sk, 其中bi表示买入的时间点,si表示卖出的时间点。满足0<=b1<s1<b2<s2<b3<s3<...<bk<sk<n。

思路分析

此问题类似动态规划问题,对于给的数组,f(k,n)不小于f(n,k-1),当f(k,n)=f(k-1,n)时,认为对这一数组进行操作不会增加最后的数值。设数组为p[n]

对于已知的b1,b2....b(k-1),s1,s2,..s(k-1),如何得到下一组买入时间和卖出时间呢?对于最终的a(k),b(k),一定存在某个i,使得s(i)<B<S<b(i+1),或者b(i)<S<B<s(i)。
  • 第一种情况:s(i)<B<S<b(i+1)  这种情况下,在s(i)时刻,股票仍然在市场上,在B时刻,买入股票,在S时刻卖出股票。因此B和S一定是在(s(i),b(i+1))中满足B<S且p[S]-p[B]最大的两个下标。
  • 第二种情况:b(i)<S<B<s(i)   这种情况下,在b(i)时刻,股票在用户手中,用户在S时刻卖出股票,在B时刻买入,再次在S时刻卖出。因此B和S一定是在(b(i),s(i))中满足p[S]-p[B]最大且B>S的两个下标。
每一次增加k时,每一个i<k都有两个以上的<B,S>二元组,那么应该选取哪个i呢?
k次买卖后,整个数组分为了最多2k+1段,在(b(i),s(i))中,股票在用户手中,其他段,股票在市场上。在每一段上,用户能继续获得的利润的计算方式不同。如果我们计算每一段用户能获得的最大利润,继续操作时,我们从所有段中选择继续获得利润最大的一段。在这一段上进行买入卖出或卖出买入,即为下一操作能获得的最大利润。注意到每一次操作都会将1段拆为3段。
如下图所示:


我们使用两个最大堆,第一个堆存放在市场上的时间段,其中每个元素包含最大的用户可以获得的最大利润。第二个堆存放在用户手中的时间段,其中每个元素包含用户可以增长的最大利润。在每一次操作中,我们分别从两个堆中去的最大值,比较两者,选择较大值H,将最大利润增加H,然后维护两个堆。即删除一个堆中的最大值,然后向两个堆中插入总共3个元素。
当操作k次或者两个堆中最大元素为0或两个堆均为空时,即可宣告结束。

数据结构设计

设计两个堆,两个堆均用数组表示,以节省内存空间。由于k的值为变量,且可能很大。为了节省内存开支,因此首先申请长度50的数组来存储堆,当数组满时,将数组扩增到原来两倍大小。两个堆的元素如下:
struct buysells//股票在用户手中的时间段
{
//股票在beginDay最低,在endDay最高,increaseProfit = p(sellDay)-p(buyDay)
//beginDay<sellDay<buyDay<endDay
int beginDay;//用户在beginDay买入
int endDay;//用户在beginday卖出
int buyDay;//若想获得最大利润增长,需再次在buyDay买入
int sellDay;//若想获得最大利润增长,需再次在sellDay卖出
int increaseProfit;//最大的利润增长价值
};
struct freetimes//股票在市场上的时间段
{
//startDay<=buyDay<sellDay<=endDay
//profit = p(sellDay)-p(buyDay)
int startDay;//股票在市场上第一天
int endDay;//股票在市场上最后一天
int buyDay;//若想获得最大利润,需在buyDay买入
int sellDay;//若想蝴蝶最大利润,需在sellDay卖出
int profit;//用户可以获得最大利润
};

代码

struct buysells//股票在用户手中的时间段
{
//股票在beginDay最低,在endDay最高,increaseProfit = p(sellDay)-p(buyDay)
//beginDay<sellDay<buyDay<endDay
int beginDay;//用户在beginDay买入
int endDay;//用户在beginday卖出
int buyDay;//若想获得最大利润增长,需再次在buyDay买入
int sellDay;//若想获得最大利润增长,需再次在sellDay卖出
int increaseProfit;//最大的利润增长价值
};
typedef struct buysells buysell;
typedef buysell *buysellpointer; struct freetimes//股票在市场上的时间段
{
//startDay<=buyDay<sellDay<=endDay
//profit = p(sellDay)-p(buyDay)
int startDay;//股票在市场上第一天
int endDay;//股票在市场上最后一天
int buyDay;//若想获得最大利润,需在buyDay买入
int sellDay;//若想蝴蝶最大利润,需在sellDay卖出
int profit;//用户可以获得最大利润
};
typedef struct freetimes freetime;
typedef freetime * freetimepointer; //扩展数组到原来的两倍,其中*bsppNumLimit为原来的数组最大长度
//由于数组中存的是buysellpointer,因此需要指向指针的指针做为参数,buysellpointer **
void expandBSPHeap(buysellpointer **heap, int *bsppNumLimit)
{
//分配两倍的数组空间,每个数组中存放的是buysellpointer
buysellpointer* newheap = (buysellpointer*)malloc(*bsppNumLimit *2 * sizeof(buysellpointer)); for (int i = 0; i < *bsppNumLimit; i++)
{
newheap[i] = (*heap)[i];
}
free(*heap);//释放原有的buysellpointer数组
*heap = newheap;//由于需要改变heap,因此使用指针
*bsppNumLimit = *bsppNumLimit * 2;
} void insertBSP(buysellpointer BSP,buysellpointer **heap, int *length, int *bsppNumLimit)
{
if(*length == *bsppNumLimit)
expandBSPHeap(heap,bsppNumLimit); (*heap)[(*length)++] = BSP;
int index = *length-1;
buysellpointer tempBSP = BSP;
//向堆中插入元素
while (index!=0 && (*heap)[(index+1)/2-1]->increaseProfit < tempBSP->increaseProfit )
{
(*heap)[index] = (*heap)[(index+1)/2-1];
index = (index+1)/2 -1;
}
(*heap)[index] = BSP;
} void deleteBSP(buysellpointer *heap, int *length)
{
//删除最大元素
if(*length == 0)
return;
(*length)--;
free(heap[0]);//释放空间
heap[0] = heap[*length];
buysellpointer tempBSP = heap[*length];
int index = 0;
int maxChildIndex = 1;
while (maxChildIndex < *length)
{
if(maxChildIndex + 1 < *length)
if(heap[maxChildIndex+1]->increaseProfit > heap[maxChildIndex]->increaseProfit)
maxChildIndex++;
if(heap[maxChildIndex]->increaseProfit > tempBSP->increaseProfit)
{
heap[index] = heap[maxChildIndex];
heap[maxChildIndex] = tempBSP;
index = maxChildIndex;
maxChildIndex = (index+1)*2 - 1;
}
else
break;
}
} void expandFTPHeap(freetimepointer **heap, int *fppNumLimit)
{
freetimepointer* newheap = (freetimepointer*)malloc(*fppNumLimit *2 * sizeof(buysellpointer)); for (int i = 0; i < *fppNumLimit; i++)
{
newheap[i] = (*heap)[i];
}
free(*heap);
*heap = newheap;
*fppNumLimit = *fppNumLimit * 2;
} void insertFTP(freetimepointer FTP,freetimepointer **heap, int *length, int *fppNumLimit)
{
if(*length == *fppNumLimit)
expandFTPHeap(heap,fppNumLimit); (*heap)[(*length)++] = FTP;
int index = *length-1;
freetimepointer tempFTP = FTP;
while (index!=0 && (*heap)[(index+1)/2-1]->profit < tempFTP->profit )
{
(*heap)[index] = (*heap)[(index+1)/2-1];
index = (index+1)/2 -1;
}
(*heap)[index] = tempFTP;
} void deleteFTP(freetimepointer *heap, int *length)
{
if(*length == 0)
return;
(*length)--;
free(heap[0]);
heap[0] = heap[*length];
freetimepointer tempFTP = heap[*length];
int index = 0;
int maxChildIndex = 1;
while (maxChildIndex < *length)
{
if(maxChildIndex + 1 < *length)
if(heap[maxChildIndex+1]->profit > heap[maxChildIndex]->profit)
maxChildIndex++;
if(heap[maxChildIndex]->profit > tempFTP->profit)
{
heap[index] = heap[maxChildIndex];
heap[maxChildIndex] = tempFTP;
index = maxChildIndex;
maxChildIndex = (index+1)*2 - 1;
}
else
break;
}
} //找到股票在市场期间能获得的最大利润
void findmaxprofit(int prices[],freetimepointer ftp)
{
int minDay = ftp->startDay;
ftp->buyDay = minDay;
ftp->sellDay = minDay;
ftp->profit = 0;
for (int i = ftp->startDay+1; i <= ftp->endDay; i++)
{
minDay = (prices[minDay] > prices[i]) ? i : minDay;
if (prices[i] - prices[minDay] > ftp->profit)
{
ftp->buyDay = minDay;
ftp->sellDay = i;
ftp->profit = prices[i] - prices[minDay];
}
}
} //找到股票在用户手中期间能获得的最大利润增长
void findMaxIncreaseProfit(int prices[],buysellpointer bsp)
{
int maxDay = bsp->beginDay;
bsp->buyDay = maxDay;
bsp->sellDay = maxDay;
bsp->increaseProfit = 0;
for (int i = bsp->beginDay+1; i < bsp->endDay; i++)
{
maxDay = (prices[i] > prices[maxDay]) ? i : maxDay;
if (prices[maxDay] - prices[i] > bsp->increaseProfit)
{
bsp->buyDay = i;
bsp->sellDay = maxDay;
bsp->increaseProfit = prices[maxDay] - prices[i];
}
} } int maxProfit(int k, int prices[], int n) { int totalProfit=0;
int fppNumLimit = 50;
//股票在市场中的时间段组成的堆
freetimepointer *fpp= (freetimepointer*)malloc(fppNumLimit*sizeof(freetimepointer));
int fppNum = 0;
int bsppNumLimit = 50;
//股票在用户手中的时间的组成的堆
buysellpointer *bspp = (buysellpointer*)malloc(bsppNumLimit*sizeof(freetimepointer));
int bsppNum = 0;
//初始化第一个股票在市场中的时间段
fpp[0] = (freetimepointer)malloc(sizeof(freetime));
fpp[0]->startDay = 0;
fpp[0]->endDay = n-1;
findmaxprofit(prices,fpp[0]);
if(fpp[0]->profit == 0)
return 0;
fppNum++; for (int i = 0; i < k; i++)
{
int maxIncreaseProfit =0, maxProfit = 0;
if(fppNum)
maxProfit = fpp[0]->profit;
if(bsppNum)
maxIncreaseProfit = bspp[0]->increaseProfit;
if(maxIncreaseProfit == 0 && maxProfit==0)//已经没有收入增长,堆为空或者没有增长空间。
return totalProfit;
if(maxIncreaseProfit > maxProfit)//用户持有的时间段进行卖出买入
{
buysellpointer tempBSP = bspp[0];
buysellpointer tempBSP1 = NULL;
if (tempBSP->sellDay -1 > tempBSP->beginDay +1)
{
tempBSP1 = (buysellpointer)malloc(sizeof(buysell));
tempBSP1->beginDay = tempBSP->beginDay;
tempBSP1->endDay = tempBSP->sellDay;
findMaxIncreaseProfit(prices,tempBSP1);
if(tempBSP->increaseProfit == 0)
free(tempBSP1);
else
insertBSP(tempBSP1, &bspp, &bsppNum,&bsppNumLimit);
}
if(tempBSP->endDay -1 > tempBSP->buyDay+1)
{
tempBSP1 = (buysellpointer)malloc(sizeof(buysell));
tempBSP1->beginDay = tempBSP->buyDay;
tempBSP1->endDay = tempBSP->endDay;
findMaxIncreaseProfit(prices,tempBSP1);
if(tempBSP->increaseProfit == 0)
free(tempBSP1);
else
insertBSP(tempBSP1, &bspp, &bsppNum,&bsppNumLimit);
}
if(tempBSP->buyDay -1 > tempBSP->sellDay +1)
{
freetimepointer tempFTP = (freetimepointer)malloc(sizeof(freetime));
tempFTP->startDay = tempBSP->sellDay +1;
tempFTP->endDay = tempBSP->buyDay - 1;
findmaxprofit(prices, tempFTP);
if(tempFTP->profit == 0)
free(tempFTP);
else
insertFTP(tempFTP,&fpp,&fppNum,&fppNumLimit);
}
totalProfit += maxIncreaseProfit;
deleteBSP(bspp,&bsppNum);
}
else
{
freetimepointer tempFTP = fpp[0];
int buyDay = tempFTP->buyDay;
int sellDay = tempFTP->sellDay;
freetimepointer tempFTP1 = NULL;
if(buyDay > tempFTP->startDay + 1)
{
tempFTP1 = (freetimepointer)malloc(sizeof(freetime));
tempFTP1->startDay = tempFTP->startDay;
tempFTP1->endDay = buyDay -1;
findmaxprofit(prices,tempFTP1);
if(tempFTP1->profit == 0)
free(tempFTP1);
else
insertFTP(tempFTP1,&fpp,&fppNum,&fppNumLimit);
}
if(tempFTP->endDay > tempFTP->sellDay + 1)
{
tempFTP1 = (freetimepointer)malloc(sizeof(freetime));
tempFTP1->startDay = tempFTP->sellDay + 1;
tempFTP1->endDay = tempFTP->endDay;
findmaxprofit(prices,tempFTP1);
if(tempFTP1->profit == 0)
free(tempFTP1);
else
insertFTP(tempFTP1,&fpp,&fppNum,&fppNumLimit);
}
if (tempFTP->sellDay-1 > tempFTP->buyDay+1 )
{
buysellpointer tempBSP = (buysellpointer)malloc(sizeof(buysell));
tempBSP->beginDay = tempFTP->buyDay;
tempBSP->endDay = tempFTP->sellDay;
findMaxIncreaseProfit(prices,tempBSP);
if(tempBSP->increaseProfit == 0)
free(tempBSP);
else
insertBSP(tempBSP,&bspp,&bsppNum,&bsppNumLimit);
}
totalProfit += maxProfit;
deleteFTP(fpp,&fppNum);
}
}
return totalProfit;
}

总结

这个题目花费了我一天多的时间,做为编程菜鸟的我还算可以,独立做出一道有一定难度的题目,还学会了不少知识。
  1. 不知道数组大小的情况下或在大小为变量的情况下,可以用malloc方法分配内存,如
    buysellpointer* newheap = (buysellpointer*)malloc(*bsppNumLimit *2 * sizeof(buysellpointer));
  2. 加强了对二重指针的理解,在我的解法中,还遇到了三层指针,如buysellpointer **heap,对指针、内存的理解更加深入了。
  3. 数组大小未知,可以先分配一定内存,如果不够,分配两倍内存,进行拷贝,然后返回。
  4. 对最大堆的插入和删除的理解深入,毕竟自己写代码。
  5. 不足在于代码太长,特别是两个不同类型的堆,每种操作要写两遍代码,十分不方便。shagnwang

leetcode 第188题,我的解法,Best Time to Buy and Sell Stock IV的更多相关文章

  1. Leetcode之动态规划(DP)专题-188. 买卖股票的最佳时机 IV(Best Time to Buy and Sell Stock IV)

    Leetcode之动态规划(DP)专题-188. 买卖股票的最佳时机 IV(Best Time to Buy and Sell Stock IV) 股票问题: 121. 买卖股票的最佳时机 122. ...

  2. 【LeetCode】Best Time to Buy and Sell Stock IV

    Best Time to Buy and Sell Stock IV Say you have an array for which the ith element is the price of a ...

  3. Java for LeetCode 188 Best Time to Buy and Sell Stock IV【HARD】

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  4. [LeetCode] 188. Best Time to Buy and Sell Stock IV 买卖股票的最佳时间 IV

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  5. 【LeetCode】188. Best Time to Buy and Sell Stock IV 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  6. [LeetCode] Best Time to Buy and Sell Stock IV 买卖股票的最佳时间之四

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  7. LeetCode Best Time to Buy and Sell Stock IV

    原题链接在这里:https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/ 题目: Say you have an array ...

  8. [LeetCode][Java] Best Time to Buy and Sell Stock IV

    题目: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...

  9. 【刷题-LeetCode】188 Best Time to Buy and Sell Stock IV

    Best Time to Buy and Sell Stock IV Say you have an array for which the i-th element is the price of ...

随机推荐

  1. Struts2 源码分析——调结者(Dispatcher)之准备工作

    章节简言 上一章笔者讲到关于struts2过滤器(Filter)的知识.让我们了解到StrutsPrepareFilter和StrutsExecuteFilter的作用.特别是StrutsPrepar ...

  2. 怎么让composer加速

    composer install 为什么这么慢? 下面是一个composer install(在没有composer cache的情况下)做的所有事情: [vagrant@localhost comp ...

  3. 四、BLE(中)

    1.1       GATT Manager GATT MGR模块管理所有的GATT服务,同时也是连接GATT模块与GATT ServiceS模块的桥梁. 1.1.1    主要功能模块 先来看一张该 ...

  4. 从设计到开发,硅谷技术专家教你做“声控”APP

    编者:本文为携程机票研发部技术专家祁一鸣在携程技术微分享中的分享内容,关注携程技术中心微信公号ctriptech,获知更多一手干货. [携程技术微分享]是携程技术中心推出的线上公开分享课程,每月1-2 ...

  5. No assembly found containing an OwinStartupAttribute

    自从在ASP.NET MVC中使用NuGet添加SignalR类库之后,再次运行程序时,它出现了一个异常: Server Error in '/' Application. The following ...

  6. android 开发:shape和selector和layer-list的(详细说明)

    目录(?)[+] Shape 简介 使用的方法 属性 Selector 简介 使用的方法 layer-list 简介 例子 最后   <shape>和<selector>在An ...

  7. 关于OpenCart的一个小建议

    OpenCart是一套老牌的开源自由B2C电商系统,最近watch了其托管在在github上的项目,发现还是很活跃的,每天都有人反馈bug. 初步的看一下,它是支持在后台管理多个店铺的,而且可以同一个 ...

  8. Scalaz(36)- Free :实践-Free In Action - 实用体验

    在上面几期讨论中我们连续介绍了Free Monad.因为FP是纯函数编程,也既是纯函数的组合集成,要求把纯代码和副作用代码可以分离开来.Free Monad的程序描述(AST)和程序实现(Interp ...

  9. python学习笔记12 ----线程、进程

    进程和线程的概念 进程和线程是操作系统中两个很重要的概念,对于一般的程序,可能有若干个进程,每一个进程有若干个同时执行的线程.进程是资源管理的最小单位,线程是程序执行的最小单位(线程可共享同一进程里的 ...

  10. 【原创】SQLServer将数据导出为SQL脚本的方法

    最近很多同学问到一个问题,如何将MSSQLServer的数据库以及里面的数据导出为SQL脚本,主要问的是MSSQLServer2000和2005,因为2008的管理器已经有了这个功能,2000和200 ...