原题:  Turn the pokers
      思路:假设正面为0,反面为1。牌就像这样 000000....... 。考虑到假如可以实现最终反面个数为m, 牌共n张, 则这n张排任取m个为反面其余都为正面的状况都能实现。于是转化为考虑最终可能出现1的个数的集合有哪些。
      因为可能的个数集合是连续的(在最大最小值之内相差2的都可能), 所以每一次翻转之后的上下限都可以根据上一次所得的上下限推出。
      最后算排列组合的适合需要用到组合数递推公式和费马小定理推论\( a^{p-2} \equiv a^{-1} \bmod p \) , 通过快速幂的方法算一下逆元。

其实TLE了n次。。。。。。用位运算简化了一下。。。而且输入那个部分要用scanf才够快。

  1 #include <iostream>

  2 #include <fstream>

  3 #include <cstring>

  4 #include <cstdio>

  5 #include <algorithm>

  6 #include <cmath>

  7 //#define LOCAL

  8 #define fin cin

  9 #define fout cout

 10 #define LL long long int

 11 #define maxn 100000+5

 12 using namespace std;

 13 LL MM=;

 14 LL C[maxn];

 15 LL quickmod(LL a,int b)

 16 {

 17    LL ans=,base=a;

 18 

 19    while(b!=)

 20    {

 21      if(b&)

 22      {

 23         ans=ans*base%MM;

 24     }

 25     b>>=;

 26     base=base*base%MM;

 27 }

 28 

 29 return ans;

 30 }

 31 int main ()

 32 {

 33 #ifdef LOCAL

 34     ofstream fout ("1.out");

 35     ifstream fin ("1.in");

 36 #endif

 37 

 38     int i,j,k;

 39     int n,m,x;

 40 

 41     memset(C,,sizeof(C));

 42 

 43     while(fin>>n>>m)

 44     {

 45 

 46         int left,right,a1,a2;

 47         left=; right=;

 48 

 49         for(i=;i<n;i++)

 50         {

 51             scanf("%d",&x);

 52 

 53 

 54             if(x<=left){ a1=left-x; }

 55             else if(x<=right)

 56                 {   a1= ((left&)==(x&))?:;

 57                 }

 58                 else{

 59                     a1=x-right;

 60                 }

 61 

 62                 if(x<=m-right){ a2=right+x; }

 63                 else if(x<=m-left)

 64                 {

 65                     a2 = (((m-left)&) == (x&)?m:m-);

 66                 }

 67                 else{

 68                     a2=*m-(x+left);

 69                 }

 70 

 71                 left=a1;right=a2;

 72 

 73             }

 74 

 75 

 76             C[]=; C[m]=;

 77 

 78             for(i=;i<=m/+;i++)

 79                 {C[i]=C[i-]*(m-i+)%MM*quickmod(i,MM-)%MM;

 80 

 81                    C[m-i]=C[i];

 82                }

 83 

 84 

 85                LL sum = ;

 86                for(i = left; i<=right; i+=)

 87                 { sum+=C[i];

 88                   sum%=MM;

 89               }

 90 

 91               fout<<sum<<endl;

 92           }

 93 

 94 

 95 #ifdef LOCAL

 96           fin.close();

 97           fout.close();

 98 #endif

 99 

           return ;} 

HDU-4869 Turn the pokers的更多相关文章

  1. HDU 4869 Turn the pokers(推理)

    HDU 4869 Turn the pokers 题目链接 题意:给定n个翻转扑克方式,每次方式相应能够选择当中xi张进行翻转.一共同拥有m张牌.问最后翻转之后的情况数 思路:对于每一些翻转,假设能确 ...

  2. hdu 4869 Turn the pokers (2014多校联合第一场 I)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. HDU 4869 Turn the pokers(思维+组合公式+高速幂)

    pid=4869" target="_blank">Turn the pokers 大意:给出n次操作,给出m个扑克.然后给出n个操作的个数a[i],每一个a[i] ...

  4. HDU 4869 Turn the pokers (2014 Multi-University Training Contest 1)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  5. hdu 4869 Turn the pokers (思维)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  6. HDU 4869 Turn the pokers (2014多校联合训练第一场1009) 解题报告(维护区间 + 组合数)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  7. hdu 4869 Turn the pokers(组合数+费马小定理)

    Problem Description During summer vacation,Alice stay at home for a long time, with nothing to do. S ...

  8. HDU 4869 Turn the pokers (2014 多校联合第一场 I)

    HDOJ--4869--Turn the pokers[组合数学+快速幂] 题意:有m张扑克,开始时全部正面朝下,你可以翻n次牌,每次可以翻xi张,翻拍规则就是正面朝下变背面朝下,反之亦然,问经过n次 ...

  9. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  10. HDU 4869 Turn the pokers(思维+逆元)

    考试的时候没有做出来... 想到了答案一定是一段连续的区间,一直在纠结BFS判断最后的可行1数. 原来直接模拟一遍就可以算出来最后的端点... 剩下的就是组合数取模了,用逆元就行了... # incl ...

随机推荐

  1. Java 的replace和replaceAll的使用

    (1)replace() 方法通过用 newChar 字符替换字符串中出现的所有 oldChar 字符,并返回替换后的新字符串. public String replace(char oldChar, ...

  2. vim--macro

    例: qa some vim command q 这个宏只记录了vim命令到寄存器a中,执行这个宏可以用命令: @a 也可以加上执行次数: 10@a 执行10次 当你执行过一次@a之后,你可以用 @@ ...

  3. Ajax 知识点

    AJAX 即"Asynchronous Javascript And XML"(异步JavaScript和XML) Ajax 不是某种编程语言,只是一种在无需重新加载整个网页的情况 ...

  4. python-mysqldb安装

    出现错误  command 'gcc' failed with exit status 1 解决办法: yum install python-devel mysql-devel zlib-devel ...

  5. JavaWeb 学习003-简单登录页面功能实现

    先说下题外话:学习不是看你学了多久,重点是学到多少: 这就要求   效率.我在这三个小时,但是有效率的又有多久?只是做了这么一点简单的事. 登录页面 跟数据库交互,进行判断是否登陆成功.我只是实现了一 ...

  6. apache结合svn创建svn资源库

    1.在登录过程中可以查看error日志,如果发生以下提示: (13)Permission denied: Could not open password file 2.运行:chcon -R -h - ...

  7. (转)ant 使用指南

    ant 使用指南  文件转载自:http://www.cnblogs.com/hoojo/archive/2013/06/14/java_ant_project_target_task_run.htm ...

  8. (原创)通用查询实现方案(可用于DDD)[附源码] -- 简介

    [声明] 写作不易,转载请注明出处(http://www.cnblogs.com/wiseant/p/3985353.html).   [系列文章] 通用查询实现方案(可用于DDD)[附源码] -- ...

  9. 详解C语言的类型转换

    1.自动类型转换 字符型变量的值实质上是一个8位的整数值,因此取值范围一般是-128-127,char型变量也可以加修饰符unsigned,则unsigned char 型变量的取值范围是0-255( ...

  10. 学习总结relative和absolute

    之前对于absolute和relative不了解,现在整理 先设置relative再设置absolute 因为父不设置relative 那么子会向上寻找祖先元素,看是否设置relative.如果有则相 ...