UVa 12558 - Egyptian Fractions (HARD version)
题目大意:
给出一个真分数,把它分解成最少的埃及分数的和。同时给出了k个数,不能作为分母出现,要求解的最小的分数的分母尽量大。
分析:
迭代加深搜索,求埃及分数的基础上,加上禁用限制就可以了。具体可以参考一下紫书。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<set>
using namespace std;
typedef long long LL;
LL ans[],v[];
set<LL> s;
int maxd;
LL gcd(LL a,LL b)
{
return b?gcd(b,a%b):a;
}
typedef long long LL;
LL get_first(LL a,LL b)
{
return b/a+;
}
bool better(int d)
{
for(int i=d;i>=;i--)
if(v[i]!=ans[i])
return ans[i]==-||v[i]<ans[i];
return false;
}
bool dfs(int d,LL from,LL aa,LL bb)
{
if(d==maxd)
{
if(bb%aa) return false;
v[d]=bb/aa;
if(s.count(bb/aa)) return false; if(better(d)) memcpy(ans,v,sizeof(LL)*(d+));
return true;
}
bool ok=false;
for(LL i=max(from,get_first(aa,bb));;i++)
{
if(bb*(maxd+-d)<=i*aa)
break;
if(s.count(i)) continue;
v[d]=i;
LL b2=bb*i;
LL a2=aa*i-bb;
LL g=gcd(a2,b2);
if(dfs(d+,i+,a2/g,b2/g))
ok=true;
}
return ok;
}
int main()
{
int t,k;
LL a,b,num;
scanf("%d",&t);
for(int ii=;ii<=t;ii++)
{
s.clear();
scanf("%lld%lld%d",&a,&b,&k);
for(int i=;i<k;i++)
{
scanf("%lld",&num);
s.insert(num);
}
int ok=;
for(maxd=;;maxd++)
{
memset(ans,-,sizeof(ans));
if(dfs(,get_first(a,b),a,b))
{
ok=;break;
} }
printf("Case %d: %lld/%lld=",ii,a,b);
for(int i=;i<=maxd;++i){
if(i) printf("+");
printf("1/%lld",ans[i]);
}
printf("\n");
}
return ;
}
UVa 12558 - Egyptian Fractions (HARD version)的更多相关文章
- UVA12558 Egyptian Fractions (HARD version) (埃及分数,迭代加深搜索)
UVA12558 Egyptian Fractions (HARD version) 题解 迭代加深搜索,适用于无上界的搜索.每次在一个限定范围中搜索,如果无解再进一步扩大查找范围. 本题中没有分数个 ...
- uva12558 Egyptian Fractions (HARD version)(迭代深搜)
Egyptian Fractions (HARD version) 题解:迭代深搜模板题,因为最小个数,以此为乐观估价函数来迭代深搜,就可以了. #include<cstdio> #inc ...
- 【Uva 12558】 Egyptian Fractions (HARD version) (迭代加深搜,IDA*)
IDA* 就是iterative deepening(迭代深搜)+A*(启发式搜索) 启发式搜索就是设计估价函数进行的搜索(可以减很多枝哦~) 这题... 理论上可以回溯,但是解答树非常恐怖,深度没有 ...
- UVA-12558 Egyptian Fractions (HARD version) (IDA* 或 迭代加深搜索)
题目大意:经典的埃及分数问题. 代码如下: # include<iostream> # include<cstdio> # include<cstring> # i ...
- UVA12558 Egyptian Fractions (HARD version)(埃及分数)
传送门 题目大意 给出一个真分数 a/b,要求出几个互不相同的埃及分数(从大到小),使得它们之和为 a/b (埃及分数意思是分子为1的分数,详见百度百科) 如果有多组解,则分数数量少的优先 如果分数数 ...
- 【习题 7-7 UVA-12558】Egyptian Fractions (HARD version)
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 迭代加深搜索. 枚举最大量maxdep 在dfs里面传剩余的要凑的分子.分母 以及上一次枚举的值是多少. 然后找到最小的k,满足1/ ...
- UVA12558-Efyptian Fractions(HARD version)(迭代加深搜索)
Problem UVA12558-Efyptian Fractions(HARD version) Accept:187 Submit:3183 Time Limit: 3000 mSec Pro ...
- UVa 10814 - Simplifying Fractions
题目大意:给一个分数,对其进行化简.因为分子.分母最大为1030,所以用要用大数. import java.io.*; import java.util.*; import java.math.*; ...
- 【例题 7-3 UVA - 10976】Fractions Again?!
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] x>=y => \(\frac{1}{x}<=\frac{1}{y}\) => \(\frac{1}{x}= ...
随机推荐
- GUID
前言 全局唯一标识符,简称GUID(发音为 /ˈɡuːɪd/或/ˈɡwɪd/),是一种由算法生成的唯一标识,通常表示成32个16进制数字(0-9,A-F)组成的字符串,如:{21EC2020-3AEA ...
- InLineHookSSDT
//当Ring3调用OpenProcess //1从自己的模块(.exe)的导入表中取值 //2Ntdll.dll模块的导出表中执行ZwOpenProcess(取索引 进入Ring0层) //3进入R ...
- C++-const_cast, reinterpret_cast, static_cast的用法
/////////////////////////////////////////////////////////////////////////////// // // FileName : cas ...
- vs 折叠跟展开所有方法。
Ctrl + M + O: 折叠所有方法 Ctrl + M + M: 折叠或者展开当前方法 Ctrl + M + L: 展开所有方法
- VS2010中添加lib库引用
VS2010中添加lib库引用: 1 菜单 项目---> 属性--->配置属性-->链接器---->输入---附加依赖项, 加入库名,如: my_API.lib; 或是在c ...
- Cisco IOS debug command reference Command A through D
debug aaa accounting through debug auto-config debug aaa accounting : to display information on acco ...
- android baseApplication 基类
package com.free.csdn.base; import java.io.File;import java.util.ArrayList;import java.util.List; im ...
- 100个iOS开发/设计面试题汇总
常见问题 你昨天/这周学习了什么? 你为什么热衷于软件开发? 你对哪一种控制系统比较熟悉? 是否参与过GitHub项目? 是否参与过GitHub或其他同类型网站的iOS开源项目? 请描述一下你的iOS ...
- 防止忘记初始化NSMutableArray的方法
在写项目的过程中,经常会遇到一些郁闷的事,往一个可变数组中添加一个模型数据时,经常会发现程序运行很正常,可是可变数组中就是没有任何数据,久病成医,我发现自己总是放一个错,就是NSMutableArra ...
- WEB-INF& 绝对路径vs相对路径
在struts2里面用XXXInput方法和springmvc里面用GET模式进入添加或者登陆输入页面,有时候会在方法里面做一下准备,比如动态读入部门信息放在select中,或者在model中加入一个 ...