LeetCode292:Nim Game
You are playing the following Nim Game with your friend: There is a heap of stones on the table, each time one of you take turns to remove 1 to 3 stones. The one who removes the last stone will be the winner. You will take the first turn to remove the stones.
Both of you are very clever and have optimal strategies for the game. Write a function to determine whether you can win the game given the number of stones in the heap.
For example, if there are 4 stones in the heap, then you will never win the game: no matter 1, 2, or 3 stones you remove, the last stone will always be removed by your friend.
Hint:
- If there are 5 stones in the heap, could you figure out a way to remove the stones such that you will always be the winner
bool canWinNim(int n)
{
return n% != ;
}
LeetCode292:Nim Game的更多相关文章
- [Swift]LeetCode292. Nim游戏 | Nim Game
You are playing the following Nim Game with your friend: There is a heap of stones on the table, eac ...
- [LeetCode] Nim Game 尼姆游戏
You are playing the following Nim Game with your friend: There is a heap of stones on the table, eac ...
- CodeForces - 662A Gambling Nim
http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...
- HDU 5795 A Simple Nim 打表求SG函数的规律
A Simple Nim Problem Description Two players take turns picking candies from n heaps,the player wh ...
- LeetCode 292. Nim Game
Problem: You are playing the following Nim Game with your friend: There to stones. The one who remov ...
- 【SRM】518 Nim
题意 \(K(1 \le K \le 10^9)\)堆石子,每堆石子个数不超过\(L(2 \le 50000)\),问Nim游戏中先手必败局面的数量,答案对\(10^9+7\)取模. 分析 容易得到\ ...
- HDU 2509 Nim博弈变形
1.HDU 2509 2.题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败. 3.总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客. 传送门 首先给出结 ...
- HDU 1907 Nim博弈变形
1.HDU 1907 2.题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输. 3.总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门 分析:经典的Nim博弈的一点变形. ...
- Nim游戏
目前有3堆石子,每堆石子个数也是任意的,双方轮流从中取出石子,规则如下:1)每一步应取走至少一枚石子:每一步只能从某一堆中取走部分或全部石子:2)如果谁不能取谁就失败. Bouton定理: 必败状态当 ...
随机推荐
- Node Security
发一个很早之前做的一个小东西-安全管理软件-可以对U盘进行管理,对后台程序进行扫描.分析!
- XManager介绍、安装、使用
简介 Xmanager是一款小巧.便捷的浏览远端X窗口系统的工具.在工作中经常使用Xmanager来登录远端的Linux系统,在X窗口系统上作图形化的操作.Xmanager可以将PC变成X Windo ...
- C#随机颜色和随机字母
//随机获取颜色 public System.Drawing.Color GetRandomColor() { Random RandomNum_First = new Random(Guid.New ...
- Java笔记之String
1. String s="a",t="b"; t.concat(s); 之后,t仍然是"b",而不是"ba",要使t是& ...
- android studio 加载第三方类库
以引入Xutil包为例 1. 将Xutil包导入到module的libs目录下 2. File->project structure 还有一种方法是在libs目录下右键点击Add as libr ...
- python练习程序(c100经典例9)
题目: 要求输出国际象棋棋盘. for i in range(1,9): for j in range(1,9): if i%2==0: if j%2==0: print '*', else: pri ...
- (六) 6.2 Neurons Networks Backpropagation Algorithm
今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层 ...
- Android下Fragment的动画切换效果
效果图如下: 源码链接 : 请戳这里
- UIScrollView 不能滚动的问题
uiscrollview是开发sdk自带的控件, 在使用的时候,发现滚动不了, 最常山见的原因是 contentSize 这个属性,比uiscrollview的frame要小...所以无需滚动,自然就 ...
- Linux makefile教程之后序十一[转]
后序 —— 终 于到写结束语的时候了,以上基本上就是GNU make的Makefile的所有细节了.其它的产商的make基本上也就是这样的,无论什么样的make,都是以文件的依赖性为基础的,其基本是都 ...