HDU 5451 广义斐波那契数列
这道题目可以先转化:
令f(1) = 5+2√6
f(2) = f(1)*(5+2√6)
...
f(n) = f(n-1)*(5+2√6)
f(n) = f(n-1)*(10-(5-2√6)) = 10*f(n-1)-(5-2√6)f(n-1) = 10*f(n-1) - 10/(5+2√6) f(n-1) = 10*f(n-1) - 10/(5+2√6) * (5+2√6)f(n-2)
= 10*f(n-1) - f(n-2)
那么就可以写成矩阵相乘的形式了
(f(n) , f(n-1)) = (f(n-1) , f(n-2)) (10 , 1
-1 , 0)
但这里2^x+1还是很大,这里就用到广义斐波那契数列找循环节的思想
循环节长度 = (mod-1)*(mod+1)
具体证明可以参考这里: 广义斐波那契数列
那么只要求出对模循环节后的长度进行幂运算就行了
但这里f(i)都是带根号的小数 , 这里就选择用近似的整数代替
5+2√6 = 9.89...
f(0) = (5+2√6)^0 = 1
f(1) = (5+2√6)^1 = 5+2√6
/*囧 想了半天我还是不知道为什么f(0)用2代替 , f(1)用10代替就一定保证之后取到的都是上顶*/
#include<bits/stdc++.h>
using namespace std;
#define N 100010
#define ll long long
int n,q;
ll MOD;
struct Matrix{
int m[][];
void init(){m[][]=m[][]=;m[][]=m[][]=;}
Matrix operator*(const Matrix &p) const{
Matrix ret;
for(int i= ; i< ; i++)
for(int j= ; j< ; j++){
ret.m[i][j]=;
for(int k= ; k< ; k++){
ret.m[i][j] = (ret.m[i][j]+((ll)m[i][k]*p.m[k][j])%MOD)%MOD;
}
}
return ret;
}
}; int qpow(int b)
{
ll ret= , a=;
while(b){
if(b&) ret = ret*a%MOD;
a = a*a%MOD;
b>>=;
}
return ret;
} Matrix qpow(Matrix a , int b)
{
Matrix ret;
ret.init();
while(b){
if(b&) ret = ret*a;
a = a*a;
b>>=;
}
return ret;
} int main()
{
// freopen("a.in" , "r" , stdin);
int T , cas=;
scanf("%d" , &T);
while(T--)
{
scanf("%d%d" , &n , &q);
MOD = (q-)*(q+);
n = qpow(n);
MOD = q;
Matrix a;
a.m[][]= , a.m[][]=- , a.m[][]= , a.m[][]=;
a = qpow(a , n);
ll val = (ll)*a.m[][]+(ll)*a.m[][];
val = ((val%MOD)+MOD)%MOD;
printf("Case #%d: %I64d\n" , ++cas , (val+MOD-)%MOD);
}
return ;
}
HDU 5451 广义斐波那契数列的更多相关文章
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 矩阵乘法快速幂 codevs 1574 广义斐波那契数列
codevs 1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如 ...
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...
- 洛谷P1349 广义斐波那契数列(矩阵快速幂)
P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...
- 洛谷——P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...
- codevs1574广义斐波那契数列
1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p* ...
- 「Luogu 1349」广义斐波那契数列
更好的阅读体验 Portal Portal1: Luogu Description 广义的斐波那契数列是指形如\(an=p \times a_{n-1}+q \times a_{n-2}\)的数列.今 ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
随机推荐
- HTML5结合百度地图API创建地图应用
具体的百度地图API的使用方法查看百度地图API里的DEMO <style> #div1{ width:400px; height:400px; border:1px #000 solid ...
- OpenGL的GLUT事件处理(Event Processing)窗口管理(Window Management)函数[转]
GLUT事件处理(Event Processing)窗口管理(Window Management)函数 void glutMainLoop(void) 让glut程序进入事件循环.在一个glut程序中 ...
- DRUID连接池的实用 配置详解
DRUID介绍 DRUID是阿里巴巴开源平台上一个数据库连接池实现,它结合了C3P0.DBCP.PROXOOL等DB池的优点,同时加入了日志监控,可以很好的监控DB池连接和SQL的执行情况,可以说是针 ...
- mysql使用笔记(四)
一.选择合适的数据类型 1. CHAR vs VCHAR char是固定长度的字符类型,而varchar是可变长度的字符类型.char(M)的数据列中,每个值都占用M个字节,如果某个长度小于M ...
- XP系统电脑带安卓手机上网教程(无需adhoc补丁)
XP系统电脑带安卓手机上网教程(无需adhoc补丁) WIN7系统可以虚拟wifi热点,安卓手机连上这个热点就能上网.XP系统虚拟出来的wifi热点是adhoc形式的,原生的安卓系统并不支持adhoc ...
- 在IIS7.5打开网页的时候,提示: HTTP 错误 500.0 - Internal Server Error 调用 LoadLibraryEx 失败,在 ISAPI 筛选器 "C:\Windows\Microsoft.NET\Framework\v4.0.30319\\aspnet_filter.dll" 上。解决方法
- 例题:输入您的出生日期,判断你的星座,主要练习使用datetime类及if else语句。很实用
while (true) { Console.WriteLine("请输入您的生日(年-月-日)");//提示输入 string x = Console.ReadLine();// ...
- 理论与实践中的 C# 内存模型
转载自:https://msdn.microsoft.com/magazine/jj863136 这是该系列(包含两部分内容)的第一部分,这部分将以较长的篇幅介绍 C# 内存模型. 第一部分说明 C# ...
- clip API实现遮罩
(function () { var img; var canvas = document.getElementById("canvas"); var con = canvas.g ...
- 为MySQL选择合适的备份方式
数据库的备份是极其重要的事情.如果没有备份,遇到下列情况就会抓狂: UPDATE or DELETE whitout where… table was DROPPed accidentally… IN ...