0.  引言

(1)  $f$ 在 $|z|<R$ 内解析 $\dps{\ra f(z)=\sum_{n=0}^\infty c_nz^n}$ (Taylor 级数).

(2)  $f$ 在 $r<|z|<R\ (0\leq r<R\leq\infty)$ 内解析 $\dps{\ra f(z)=?}$ (Laurent 级数).

1.  双边幂级数

(1)  定义 $$\bee\label{15_bs} \bea &\quad c_0+c_1z+c_2z^2+\cdots\quad(n\to+\infty)\\ &\quad+\cfrac{c_{-1}}{z}+\cfrac{c_{-2}}{z^2}+\cdots\quad(n\to-\infty)\\ &=\sum_{n=-\infty}^{+\infty} c_nz^n \eea \eee$$

(2)  收敛域 (不包括边界) - 圆环 $H:r<|z|<R$.

(3)  $\dps{\sum_{n=-\infty}^{+\infty} c_nz^n}$ 在 $H$ 内绝对、内闭一致收敛; 而和函数 $f(z)$ 在 $H$ 内解析, 可逐项求导, 逐项积分.

2.  解析函数的 Laurent 展式

(1)  Laurent 定理: 设 $f$ 在 $H:\ r<|z-a|<R$ ($0\leq r<R\leq\infty$) 内解析, 则 $$\bee\label{15_Lau} f(z)=\sum_{n=-\infty}^{+\infty} c_n(z-a)^n, \eee$$ 其中 $$\bee\label{15_Lau_Coef} c_n=\cfrac{1}{2\pi i}\int_{|\zeta-a|=\rho}\cfrac{f(\zeta)}{(\zeta-a)^{n+1}}\rd \zeta\quad(n\in\bbZ,\ r<\rho<R). \eee$$

a.  \eqref{15_Lau} (右端) 称为 $f$ 在 $a$ 处的 Laurent 展式 (Laurent 级数), \eqref{15_Lau_Coef} 称为其 Laurent 系数.

b.  证明: $$\beex \bea f(z)&=\cfrac{1}{2\pi i}\int_{\vGa_2}\cfrac{f(\zeta)}{\zeta-z}\rd \zeta -\cfrac{1}{2\pi i}\int_{\vGa_1}\cfrac{f(\zeta)}{\zeta-z}\rd \zeta\\ &\quad\sex{\vGa_i:\ |\zeta-a|=\rho_i,\ r<\rho_1<|z-a|<\rho_2<R}\\ &\equiv I_1-I_2;\\ I_1&=\cdots\cdots,\\ I_2&=\cdots\cdots.  \eea \eeex$$

c.  例: 分别在 (i) $|z|<1$, (ii) $1<|z|<2$, (iii) $|z|>2$; (iv) $0<|z-1|<1$, (v) $1<|z-1|<\infty$; (vi) $0<|z-2|<1$, (vii) $1<|z-2|<\infty$ 内求 $f(z)=\cfrac{1}{(z-1)(z-2)^2}$ 的 Laurent 级数.

3.  解析函数的孤立奇点

(1)  定义: 设 $f$ 在 $a$ 处不可微, 但在 $a$ 的一个去心邻域内可微, 则称 $a$ 为 $f$ 的孤立奇点.

(2)  $f$ 在孤立奇点的去心邻域内可展成 Laurent 级数.

(3)  例: $\dps{\cfrac{\sin z}{z},\ e^z+e^\frac{1}{z},\ \sin\cfrac{z}{z-1}}$.

作业: P 213 T 1 (1) .

[复变函数]第17堂课 5 解析函数的 Laurent 展式与孤立奇点 5. 1 解析函数的 Laurent 展式的更多相关文章

  1. [复变函数]第15堂课 4.3 解析函数的 Taylor 展式

    1.  Taylor 定理: 设 $f(z)$ 在 $K:|z-a|<R$ 内解析, 则 $$\bee\label{15:taylor} f(z)=\sum_{n=0}^\infty c_n(z ...

  2. [复变函数]第06堂课 2.1 解析函数的概念与 Cauchy-Riemann 方程 (续)

    2. 解析函数及其简单性质 (1) 定义: a. 若 $w=f(z)$ 在区域 $D$ 内可微, 则称 $f$ 在 $D$ 内解析; b. 若 $w=f(z)$ 在 $z_0$ 处的某邻域内解析, 则 ...

  3. [复变函数]第05堂课 1.4 复球面与 $\infty$; 作业讲解; 2 解析函数 2.1 解析函数的概念与 Cauchy-Riemann 方程

    1. 复球面 大漠孤烟直, 长河落日圆. $$\bex \bbC\cong \bbS^2\bs \sed{N},\quad \bbC_\infty=\bbC\cup \sed{\infty}\mbox ...

  4. [复变函数]第11堂课 3.3 Cauchy 积分定理及其推论

    0. 引言 (1) Cauchy 积分定理: 设 $D$ 为 $(n+1)$ 连通区域, $f$ 在 $D$ 内解析且连续到边界 $C$, 则 $\dps{\int_C f(\zeta)\rd \ze ...

  5. [复变函数]第10堂课 3.2 Cauchy 积分定理

    0. 引言 (1) $\dps{\int_{|z-a|=\rho}\frac{1}{z-a}\rd z=2\pi i\neq 0}$: 有奇点 (在 $|z|>0$: 二连通区域内解析), 周线 ...

  6. C语言学习书籍推荐《学通C语言的24堂课》下载

    下载地址:点我 编辑推荐 <学通C语言的24堂课>:用持续激励培养良好习惯以良好习惯铸就伟大梦想——致亲爱的读者朋友在开始学习<学通C语言的24堂课>的同时,强烈建议读者朋友同 ...

  7. 《程序员的思维修炼:开发认知潜能的九堂课》【PDF】下载

    <程序员的思维修炼:开发认知潜能的九堂课>[PDF]下载链接: https://u253469.ctfile.com/fs/253469-231196325 内容简介 运用一门程序设计语言 ...

  8. Python学习第五堂课

    Python学习第五堂课推荐电影:华尔街之狼 被拯救的姜哥 阿甘正传 辛德勒的名单 肖申克的救赎 上帝之城 焦土之城 绝美之城 #上节内容: 变量 if else 注释 # ""& ...

  9. 大神教你零基础学PS,30堂课从入门到精通

    ps视频教程,ps自学视频教程.ps免费视频教程下载,大神教你零基础学PS教程视频内容较大,分为俩部分: 大神教你零基础学PS--30堂课从入门到精通第一部分:百度网盘,https://pan.bai ...

随机推荐

  1. P188 实战练习(父类和子类)

    1.创建一个父类,在父类中创建两个方法,在子类中覆盖第二个方法,为子类创建一个对象,将它向上转型到基类并调用这个方法. 创建Computer父类: package org.hanqi.practise ...

  2. PHP内存消耗

    由于变量占用的空间不一样,所以其消耗的内存大小也不一样,在PHP中我们可以通过使用“memory_get_usage”来获取当前PHP消耗的内存.但是根据操作系统.PHP版本以及PHP的运行方式可能输 ...

  3. 黑马程序员——JAVA基础之抽象和接口 , 模版方法设计模式

    ------- android培训.java培训.期待与您交流! ---------- 抽象定义:           抽象就是从多个事物中将共性的,本质的内容抽取出来.           例如:狼 ...

  4. 黑马程序员——JAVA基础之 == 和equals区别

    java中 == 和equals区别: java中的数据类型,可分为两类: 1.基本数据类型,也称原始数据类型.byte,short,char,int,long,float,double,boolea ...

  5. 对 Android 开发者有益的 40 条优化建议

    本文转载于:http://www.oschina.net/translate/40-developer-tips-for-android-optimization?cmp 下面是开始Android编程 ...

  6. spring源码学习之:spring容器的applicationContext启动过程

    Spring 容器像一台构造精妙的机器,我们通过配置文件向机器传达控制信息,机器就能够按照设定的模式进行工作.如果我们将Spring容器比喻为一辆汽车,可以将 BeanFactory看成汽车的发动机, ...

  7. flash全屏输入模式

    params.allowscriptaccess = "sameDomain"; params.allowfullscreen = "true"; params ...

  8. MicroSoft Visual C++ 6.0怎么建立C++文件工程?

    1.打开VC6.02.选择菜单中的"文件"->"新建",弹出"新建"对话框3.在"新建"对话框中选择四个Sheet ...

  9. 【转】javascript入门系列演示·三种弹出对话框的用法实例

    对话框有三种 1:只是提醒,不能对脚本产生任何改变: 2:一般用于确认,返回 true 或者 false ,所以可以轻松用于 if...else...判断 3: 一个带输入的对话框,可以返回用户填入的 ...

  10. ExtJs学习笔记之FormPanel组件

    FormPanel组件 FormPanel 为 form 表单提供了一个标准的容器. 本质上还是一个标准的 Ext.panel.Panel, 只是自动创建了一个 BasicForm 来管理所有添加到 ...