Paladin Manao caught the trail of the ancient Book of Evil in a swampy area. This area contains n settlements numbered from 1 to n. Moving through the swamp is very difficult, so people tramped exactly n - 1 paths. Each of these paths connects some pair of settlements and is bidirectional. Moreover, it is possible to reach any settlement from any other one by traversing one or several paths.

The distance between two settlements is the minimum number of paths that have to be crossed to get from one settlement to the other one. Manao knows that the Book of Evil has got a damage range d. This means that if the Book of Evil is located in some settlement, its damage (for example, emergence of ghosts and werewolves) affects other settlements at distance d or less from the settlement where the Book resides.

Manao has heard of m settlements affected by the Book of Evil. Their numbers are p1, p2, ..., pm. Note that the Book may be affecting other settlements as well, but this has not been detected yet. Manao wants to determine which settlements may contain the Book. Help him with this difficult task.

Input

The first line contains three space-separated integers nm and d (1 ≤ m ≤ n ≤ 100000; 0 ≤ d ≤ n - 1). The second line contains m distinct space-separated integers p1, p2, ..., pm (1 ≤ pi ≤ n). Then n - 1 lines follow, each line describes a path made in the area. A path is described by a pair of space-separated integers ai and bi representing the ends of this path.

Output

Print a single number — the number of settlements that may contain the Book of Evil. It is possible that Manao received some controversial information and there is no settlement that may contain the Book. In such case, print 0.

Sample test(s)
input
6 2 3
1 2
1 5
2 3
3 4
4 5
5 6
output
3
Note

Sample 1. The damage range of the Book of Evil equals 3 and its effects have been noticed in settlements 1 and 2. Thus, it can be in settlements 3, 4 or 5.

题意:

1棵树,n个节点,编号为1~n,树的边权都是1再

给出m,d,然后有m个数

已知在某一个节点上有一个武器,与这个武器距离在d以内的节点都会受到辐射

现在已经知道有m个节点受到了辐射,问武器可能在的节点的个数

即求:这棵树上到这m个节点的距离都<=d的节点的个数。

树形DP,开始不知道怎么DP,总想着暴力。

令tree(i)表示以节点i为根的子树

把这m个节点称之为辐射点

dp[i][1] 表示tree(i)中,与i距离最远的辐射点的距离

dp[i][2] 表示tree(i)中,与i距离第二远的辐射点的距离(求dp[i][0]的时候需要用到)

dp[i][0] 表示整棵树-tree(i)中,与i距离最远的辐射点的距离

则与i距离最远的辐射点的距离=max(dp[i][1],dp[i][0])

若max(dp[i][0],dp[i][1])<=d,则节点i可能是武器的位置

则要求的就是满足max(dp[i][1],dp[i][0])<=d的i的个数

siz[i] 表示tree(i)中,辐射点的个数

son[i] 表示tree(i)中,dp[i][1]经过i的儿子节点son[i]

use[i] 表示节点i是不是辐射点

3次dfs,分别求出dp[i][1],dp[i][2],dp[i][0]

统计个数

 #include<cstdio>
#include<cstring> using namespace std; const int maxn=1e5+;
const int inf=0x3f3f3f3f; inline int max(int a,int b)
{
return a>b?a:b;
} int dp[maxn][];
int siz[maxn];
bool use[maxn];
int son[maxn];
struct Edge
{
int to,next;
};
Edge edge[maxn<<];
int head[maxn];
int tot=; void addedge(int u,int v)
{
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
} void solve(int ,int ,int );
void dfs0(int ,int );
void dfs1(int ,int );
void dfs2(int ,int ,int ); int main()
{
memset(head,-,sizeof head);
memset(use,false,sizeof use);
memset(son,-,sizeof son);
int n,m,d;
scanf("%d %d %d",&n,&m,&d);
for(int i=;i<=m;i++){
int u;
scanf("%d",&u);
use[u]=true;
} for(int i=;i<n;i++){
int u,v;
scanf("%d %d",&u,&v);
addedge(u,v);
addedge(v,u);
}
solve(n,m,d);
return ;
} void solve(int n,int m,int d)
{
memset(dp,,sizeof dp);
dfs0(,-);
dfs1(,-);
dfs2(,-,m); int ans=;
for(int i=;i<=n;i++){
if(max(dp[i][],dp[i][])<=d)
ans++;
}
printf("%d\n",ans);
return ;
} void dfs0(int u,int pre)
{
if(use[u])
siz[u]=;
else
siz[u]=;
for(int i=head[u];~i;i=edge[i].next){
int v=edge[i].to;
if(v==pre)
continue;
dfs0(v,u);
if(siz[v]){
dp[u][]=max(dp[u][],dp[v][]+);
siz[u]+=siz[v];
if(son[u]==-||dp[v][]>dp[son[u]][])
son[u]=v;
}
}
} void dfs1(int u,int pre)
{
for(int i=head[u];~i;i=edge[i].next){
int v=edge[i].to;
if(v==pre)
continue;
if(siz[v]){
dfs1(v,u);
if(v==son[u]){
continue;
}
else{
dp[u][]=max(dp[u][],dp[v][]+);
}
}
}
} void dfs2(int u,int pre,int m)
{
for(int i=head[u];~i;i=edge[i].next){
int v=edge[i].to;
if(v==pre)
continue;
if(m>siz[v]){
if(v==son[u])
dp[v][]=max(dp[u][],dp[u][])+;
else
dp[v][]=max(dp[u][],dp[u][])+;
}
dfs2(v,u,m);
}
}

CF 337D Book of Evil 树形DP 好题的更多相关文章

  1. codeforces 337D Book of Evil (树形dp)

    题目链接:http://codeforces.com/problemset/problem/337/D 参考博客:http://www.cnblogs.com/chanme/p/3265913 题目大 ...

  2. codeforce 337D Book of Evil ----树形DP&bfs&树的直径

    比较经典的老题 题目意思:给你一颗节点数为n的树,然后其中m个特殊点,再给你一个值d,问你在树中有多少个点到这m个点的距离都不大于d. 这题的写法有点像树的直径求法,先随便选择一个点(姑且设为点1)来 ...

  3. POJ 1155 TELE 背包型树形DP 经典题

    由电视台,中转站,和用户的电视组成的体系刚好是一棵树 n个节点,编号分别为1~n,1是电视台中心,2~n-m是中转站,n-m+1~n是用户,1为root 现在节点1准备转播一场比赛,已知从一个节点传送 ...

  4. POJ 2342 树形DP入门题

    有一个大学的庆典晚会,想邀请一些在大学任职的人来參加,每一个人有自己的搞笑值,可是如今遇到一个问题就是假设两个人之间有直接的上下级关系,那么他们中仅仅能有一个来參加,求请来一部分人之后,搞笑值的最大是 ...

  5. 51nod 1353 树 | 树形DP经典题!

    51nod 1353 树 | 树形DP好题! 题面 切断一棵树的任意条边,这棵树会变成一棵森林. 现要求森林中每棵树的节点个数不小于k,求有多少种切法. 数据范围:\(n \le 2000\). 题解 ...

  6. P2016 战略游戏——树形DP大水题

    P2016 战略游戏 树形DP 入门题吧(现在怎么是蓝色标签搞不懂): 注意是看见每一条边而不是每一个点(因为这里错了好几次): #include<cstdio> #include< ...

  7. (树形DP入门题)Anniversary party(没有上司的舞会) HDU - 1520

    题意: 有个公司要举行一场晚会.为了让到会的每个人不受他的直接上司约束而能玩得开心,公司领导决定:如果邀请了某个人,那么一定不会再邀请他的直接的上司,但该人的上司的上司,上司的上司的上司等都可以邀请. ...

  8. CF EDU 1101D GCD Counting 树形DP + 质因子分解

    CF EDU 1101D GCD Counting 题意 有一颗树,每个节点有一个值,问树上最长链的长度,要求链上的每个节点的GCD值大于1. 思路 由于每个数的质因子很少,题目的数据200000&l ...

  9. CF 461B Appleman and Tree 树形DP

    Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...

随机推荐

  1. ExtJS Panel主要配置列表

    Ext.panel.Panel 属性 值 描述 animCollapse Boolean 设置面板折叠展开是否显示动画,Ext.Fx可用默认true,否则false applyTo Mixed 面板定 ...

  2. 编写linux驱动所用到的头文件(转)

    转自:http://blog.csdn.net/lufeiop02/article/details/6448497 关于linux驱动(应用)程序头文件使用 收藏 驱动程序: #include < ...

  3. C++ 实用的小程序

    1. 打开test_ids.txt 将里面的东西添加"1_",然后另存为test_ids_repaired.txt #include <iostream> #inclu ...

  4. MUA

    a big deal analysis analytics cooperate 合作 efficient explicitly fine grained Granularity graph geogr ...

  5. WaitAny, WaitAll 和 SignalAndWait

    除了Set 和 WaitOne方法外,在类WaitHandle中还有一些用来创建复杂的同步过程的静态方法. WaitAny, WaitAll 和 SignalAndWait使跨多个可能为不同类型的等待 ...

  6. C#基础:Lambda表达式

    从委托的角度来看,Lambda表达式与匿名方法没有区别.在[C#基础:匿名方法]一文中,我使用了匿名方法来调用List<T>的FindAll方法.从C# 3.0开始,在使用匿名方法的地方, ...

  7. How to drop a PostgreSQL database if there are active connections to it?

    1.PostgreSQL 9.1 and below: SELECT pg_terminate_backend(pg_stat_activity.procpid) FROM pg_stat_activ ...

  8. Mydumper & Myloader Documentation

    Mydumper.org web site has been missing in action for a while now. I've uploaded a copy of the Mydump ...

  9. vs2010 无法创建 *.edmx(Entity Frame Work) 文件的问题

    当你安装了VS2010或者已经安装了EntityFramework41RC.exe之后发现依然在Add New Item时无法找到ADO.NET Entity Model,有可能是你创建的不是netf ...

  10. OSI安全体系结构

    建立七层模型主要是为解决异种网络互连时所遇到的兼容性问题.它的最大优点是将服务.接口和协议这三个概念明确地区分开来;也使网络的不同功能模块分担起 不同的职责.也就是说初衷在于解决兼容性,但当网络发展到 ...