zoj 3329 One Person Game (有环 的 概率dp)
这个题看的别人的思路,自己根本想不出来这种设方程的思路。
题意:
有三个骰子,分别有k1,k2,k3个面。
每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和。
当分数大于n时结束。求游戏的期望步数。初始分数为0
思路转载自: http://www.cnblogs.com/kuangbin/archive/2012/10/03/2710648.html
分析:
设dp[i]表示达到i分时到达目标状态的期望,pk为投掷k分的概率,p0为回到0的概率
则dp[i]=∑(pk*dp[i+k])+dp[0]*p0+1;
都和dp[0]有关系,而且dp[0]就是我们所求,为常数
设dp[i]=A[i]*dp[0]+B[i];
代入上述方程右边得到:
dp[i]=∑(pk*A[i+k]*dp[0]+pk*B[i+k])+dp[0]*p0+1
=(∑(pk*A[i+k])+p0)dp[0]+∑(pk*B[i+k])+1;
明显A[i]=(∑(pk*A[i+k])+p0)
B[i]=∑(pk*B[i+k])+1
先递推求得A[0]和B[0].
那么 dp[0]=B[0]/(1-A[0]);
本题通过代换系数,化简后求系数。
一般形成环的用高斯消元法求解。但是此题都是和dp[0]相关。所有可以分离出系数。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <cmath>
#include <algorithm>
#define LL __int64
const int maxn = +;
using namespace std;
double p[maxn], A[maxn], B[maxn]; int main()
{
int t, n, a, b, c, k1, k2, k3;
int i, j, k;
cin>>t;
while(t--)
{
cin>>n>>k1>>k2>>k3>>a>>b>>c;
double p0 = 1.0/k1/k2/k3;
memset(p, , sizeof(p));
for(i = ; i <= k1; i++)
for(j = ; j <= k2; j++)
for(k = ; k <= k3; k++)
if(i==a && j==b && k==c) continue;
else
p[i+j+k] += p0; memset(A, , sizeof(A));
memset(B, , sizeof(B));
for(i = n; i>= ; i--)
{
A[i] = p0; B[i] = ;
for(j = ; j <= k1+k2+k3; j++)
{
A[i] += A[i+j]*p[j];
B[i] += B[i+j]*p[j];
}
}
printf("%.12lf\n", B[]/(-A[]));
}
return ;
}
zoj 3329 One Person Game (有环 的 概率dp)的更多相关文章
- ZOJ 3329 One Person Game 带环的概率DP
每次都和e[0]有关系 通过方程消去环 dp[i] = sigma(dp[i+k]*p)+dp[0]*p+1 dp[i] = a[i]*dp[0]+b[i] dp[i] = sigma(p*(a[i+ ...
- poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP
poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...
- HDU 4089 && UVa 1498 Activation 带环的概率DP
要在HDU上交的话,要用滚动数组优化一下空间. 这道题想了很久,也算是想明白了,就好好写一下吧. P1:激活游戏失败,再次尝试. P2:连接失服务器败,从队首排到队尾. P3:激活游戏成功,队首的人出 ...
- ZOJ 3822 ( 2014牡丹江区域赛D题) (概率dp)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 题意:每天往n*m的棋盘上放一颗棋子,求多少天能将棋盘的每行每列都至少有 ...
- ZOJ 3329 One Person Game:期望dp【关于一个点成环——分离系数】
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3329 题意: 给你面数分别为k1,k2,k3的三个骰子. 给定a ...
- poj 2096 , zoj 3329 , hdu 4035 —— 期望DP
题目:http://poj.org/problem?id=2096 题目好长...意思就是每次出现 x 和 y,问期望几次 x 集齐 n 种,y 集齐 s 种: 所以设 f[i][j] 表示已经有几种 ...
- zoj 3822(概率dp)
ZOJ Problem Set - 3822 Domination Time Limit: 8 Seconds Memory Limit: 131072 KB Special Ju ...
- ZOJ 3329 One Person Game (经典概率dp+有环方程求解)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3329 题意:现在有三个骰子,分别有k1,k2和k3面,面上的点就是1~ki ...
- ZOJ Problem Set - 3329(概率DP)
One Person Game Time Limit: 1 Second Memory Limit: 32768 KB Special Judge There is a very ...
随机推荐
- C#中实现VB中的CreateObject方法
经常看到有些VB的例子中直接用个CreateObject就可调用系统功能(大多是COM对象),像用户设定,网络设定等等.虽然C#中可以通过使用VB的命名空间的方法来调用CreateObject函数,但 ...
- .NET设计模式(13):享元模式(Flyweight Pattern)(转)
摘要:面向对象的思想很好地解决了抽象性的问题,一般也不会出现性能上的问题.但是在某些情况下,对象的数量可能会太多,从而导致了运行时的代价.那么我们如何去避免大量细粒度的对象,同时又不影响客户程序使用面 ...
- jquery的ajax同步和异步的理解及示例
之前一直在写JQUERY代码的时候遇到AJAX加载数据都需要考虑代码运行顺序问题.最近的项目用了到AJAX同步.这个同步的意思是当JS代码加载到当前AJAX的时候会把页面里所有的代码停止加载,页面出去 ...
- JavaScript 文件上传类型判断
文件上传时用到一个功能,使用html元素的input标签实现, <input id="imageFile" name="imageFile1" accep ...
- Android 添加Button事件
protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentV ...
- spring security 构造函数初始化bean思路
采用有参数的构造方法来解决注入你要的属性例如:public MyInvocationSecurityMetadataSource(RoleService roleService) { this.rol ...
- allow_url_include和allow_url_fopen
allow_url_fopen没什么好说的,主要是allow_url_include 从PHP5.2开始allow_url_include就默认为Off了,而allow_url_fopen一直是On的 ...
- B股
B股的正式名称是人民币特种股票.它是以人民币标明面值,以外币认购和买卖,在中国境内(上海.深圳)证券交易所上市交易的外资股.B股公司的注册地和上市地都在境内.
- 移动平台WEB前端开发技巧汇总
原文 :http://uecss.com/mobile-platform-web-front-end-development-skills-summary.html 开发者们都知道在高端智能手机系统中 ...
- POJ 3982 序列(JAVA,简单,大数)
题目 //在主类中 main 方法必须是 public static void 的,在 main 中调用非static类时会有警告信息, //可以先建立对象,然后通过对象调用方法: import ja ...