http://www.cnblogs.com/lujinhong2/p/4686512.html

http://blog.csdn.net/paul_wei2008/article/details/20830329

http://shiyanjun.cn/archives/1472.html

一、topology拓扑图

Storm在集群上运行一个Topology时,主要通过以下3个实体来完成Topology的执行工作:
(1)Worker(进程)
(2)Executor(线程)
(3)Task

1个worker进程执行的是1个topology的子集(注:不会出现1个worker为多个topology服务)。1个worker进程会启动1个或多个executor线程来执行1个topology的component(spout或bolt)。因此,1个运行中的topology就是由集群中多台物理机上的多个worker进程组成的。

executor是1个被worker进程启动的单独线程。每个executor只会运行1个topology的1个component(spout或bolt)的task(注:task可以是1个或多个,storm默认是1个component只生成1个task,executor线程里会在每次循环里顺序调用所有task实例)。

task是最终运行spout或bolt中代码的单元(注:1个task即为spout或bolt的1个实例,executor线程在执行期间会调用该task的nextTuple或execute方法)。topology启动后,1个component(spout或bolt)的task数目是固定不变的,但该component使用的executor线程数可以动态调整(例如:1个executor线程可以执行该component的1个或多个task实例)。这意味着,对于1个component存在这样的条件:#threads<=#tasks(即:线程数小于等于task数目)。默认情况下task的数目等于executor线程数目,即1个executor线程只运行1个task。

5. 并发

1)worker工作进程级别的并发设置

2)executor线程级别的并发

真正能够提高Topology性能的并发级别

3)Task任务级别的并发

builder.setBolt(BOLT, BOLT, 2).setNumberTasks(4)

指定2个executor跑4个task。

即每个executor执行2个task,这两个task并不是并发执行,而是轮流执行。

6. 消息可靠性机制

1)Bolt消息可靠性机制

每处理完接收到Tuple,发送确认信息

2)tuple锚定

二、Trident

1. 概念

1)Storm高层次的抽象

2)在Trident中保留了Spout,但是不再有Bolt组件。封装成了一系列的Operation,比如过滤、函数、分组等

3)Trident封装好了消息可靠性保障机制

4)Trident批次概念

将固定条数的Tuple划分为一个批次

给每个批次一个编号

更新统计结果状态,要严格按照批次顺序进行更新

5)事务控制

3个层次:

(1)NON-Transactional:非事务控制

允许同一个批次内的Tuple部分处理成功,失败的Tuple,可以在其他批次内进行重试,也有可能不进行重试。

(2)Transactional:严格的事务控制

要求批次内处理失败的Tuple,只能在本批次内进行重试。

如果tuple一直重试不成功,就会将整个任务程序挂起,不会进行下个批次的处理。没有容错。

(3)Opaque-Transactional:透明事务处理

批次内的tuple处理完成过后,先把成功共的更新掉,失败的tuple允许在其他批次内进行重试,只会有一次成功处理。有容错。

2. Trident的编码开发

1)构造Topology

trident中的Spout:

从数据源上获取数据,将获取到的数据封装到一个批次,并给每个批次执行一个批次号。

2)each方法

过滤操作Filter

对满足条件的Filter,

isKeep方法

3)Filter

在Trident编码中,要注意的:

Stream流在经过各种操作后,Tuple的演变,Tuple中keyvalue对的演变。

比如:Filter

仅仅只是在Stream保留或者丢弃tuple,而不会对tuple进行改变

4)Function

Stream经过函数操作后,将新产生的keyvalue对追加到原来的Tuple中,

需要注意的是,如果没有新产生keyvalue对,那么相应的tuple将会被丢弃掉。

5)指定保留哪些keyvalue、丢弃哪些keyvalue

.project

3. 并发

3)Operation的特性

是否同一分区、是否需要跨网络。

分区:指的就是一个在executor线程中运行的task。

Filter Function project

分区内的操作,只是对本分区内的Tuple进行操作

4)重分区操作 数据流分组

partitionBy ——分区

.partitionBy(new Fields("word"))

取Tuple,key名称为word的keyvalue的value值,求hashcode,然后根据哈希值 % 分区数进行取模。

相同的keyvalue对,进入同一个分区。

同一个分区内keyvalue对是否都相同?不一定

groupBy ——分区加分组

例如 .groupBy(new Fields("word"))

实际进行了两步操作:

(1)partitionBy

(2)在将同一个分区内相同的keyvalue,分配到到一个组。

启动DRPC server服务

drpc.srevers:

hostname

drpc.port:

273

先说一下场景,日志文件中有大约三千万行数据,大小为1.2G,格式为IP,TIME,现在要针对IP字段进行数量统计重复的次数,以便制定规则来控制用户的恶意注册。

shell版【15分钟统计完成】

date
cat regIp.txt | awk -F'\t' '{ print $1}' | sort | uniq -c | sort -rn | head -n100
date

《OD学storm》20160827的更多相关文章

  1. 《OD学storm》20160828

    一.Storm项目 1. 架构 javasdk -> nginx -> 日志文件 -> flume agent(collector) -> hdfs -> kafka - ...

  2. 《OD学hive》第四周0717

    一.Hive基本概念.安装部署与初步使用 1. 后续课程 Hive 项目:hadoop hive sqoop flume hbase 电商离线数据分析 CDH Storm:分布式实时计算框架 Spar ...

  3. 《OD学hadoop》20160903某旅游网项目实战

    一.大数据的落地点 1.数据出售 数据商城:以卖数据为公司的核心业务 2. 数据分析 百度统计 友盟 GA IBM analysis 3.搜索引擎 4. 推荐系统 mahout 百分比 5.精准营销 ...

  4. 《OD学HBase》20160821

    一.HBase性能调优 1. JVM内存调优 MemStore内存空间,设置合理大小 memstore.flush.size 刷写大小 134217728 = 128M memstore.mslab. ...

  5. 《OD学Oozie》20160807Oozie

    一.引入 MapReduce Job Hive 脚本任务 同一个业务:先后.定时调度 工作流: 定义工作流程 activity jbpm oozie: 大数据工作流定义与调度框架 专门定义与调度Map ...

  6. 《OD学Flume》20160806Flume和Kafka

    一.Flume http://flume.apache.org/FlumeUserGuide.html Flume是一个分布式的,可靠的,可用的,非常有效率的对大数据量的日志数据进行收集.聚集.移动信 ...

  7. 《OD学spark》20160924scala基础

    拓展: Hadoop 3.0 NameNode HA NameNode是Active NameNode是Standby可以有多个 HBase Cluster 单节点故障? HBaster -> ...

  8. 《OD学HBase》20160820

    一.案例 微博: 微博内容: 关注用户和粉丝用户: 添加或移除关注用户 查看关注用户的微博内容 微博数据存储: 响应时间 秒级 无延迟 (1)mysql分布式 (2)hbase数据库 使用HBase数 ...

  9. 《OD学HBase》20160814

    一.HBase引入 http://hbase.apache.org/ 大数据的数据库 1. 概述 Hadoop生态系统中的一个分布式.可拓展.面向列.可伸缩,具有自动容错功能的数据库. NoSQL数据 ...

随机推荐

  1. c++取小数整数部分

    #include<math.h> double ceil(double x) //向上取整 double floor(double x) //向下取整 向上取整,取比x大的第一个整数值向下 ...

  2. [工作记录] Android OpenSL ES: references & AAC related

    AAC V.S. MP3 http://en.wikipedia.org/wiki/Advanced_Audio_Coding#AAC.27s_improvements_over_MP3 AAC pa ...

  3. Asp.net 自定义控件开发相关的几种嵌入资源解决方案

    前提: 如下将要介绍的几种类型资源都要在其属性页窗口, 将 <生成操作> 属性, 设置为[嵌入的资源], 如图:   ► 给自定义控件添加自定义图标的几种方案   方法一: 直接在自定义控 ...

  4. BZOJ1821: [JSOI2010]Group 部落划分

    这题乍看很吓人,其实就是一个贪心. 每次取最近的两个点所在的块合并,直到只剩下k块,输出答案. /*************************************************** ...

  5. HDU 4632 Palindrome subsequence(区间dp,回文串,字符处理)

    题目 参考自博客:http://blog.csdn.net/u011498819/article/details/38356675 题意:查找这样的子回文字符串(未必连续,但是有从左向右的顺序)个数. ...

  6. POJ 2010

    Moo University - Financial Aid Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4235   A ...

  7. 制作类似DataGrid自定义控件

    首先看一下.net自带的DataGrid,想想如何应该怎样才能实现那样的展现形式. 1)需要以网格形式显示内容. 2)网格的宽度.高度可以定义. 3)可以显示滚动条. 4)单击可以选中某个单元格. 当 ...

  8. ExtJs之文本框及数字输入

    结合HTML来理解, 比较容易. <!DOCTYPE html> <html> <head> <title>ExtJs</title> &l ...

  9. tomcat下context.xml中JNDI数据源配置

    jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API.命名服务将名称和对象联系起来,使得我们可以用 ...

  10. [转载] Linux poll机制

    原地址:http://hongwazi.blog.163.com/blog/#m=0&t=3&c=poll poll的是一种查询的方式,英文解释 :民意调查 函数原型:int poll ...