一、概述

LinkedList与ArrayList一样实现List接口,只是ArrayList是List接口的大小可变数组的实现,LinkedList是List接口链表的实现。基于链表实现的方式使得LinkedList在插入和删除时更优于ArrayList,而随机访问则比ArrayList逊色些。

LinkedList实现所有可选的列表操作,并允许所有的元素包括null。

除了实现 List 接口外,LinkedList 类还为在列表的开头及结尾 get、remove 和 insert 元素提供了统一的命名方法。这些操作允许将链接列表用作堆栈、队列或双端队列。

此类实现 Deque 接口,为 add、poll 提供先进先出队列操作,以及其他堆栈和双端队列操作。

所有操作都是按照双重链接列表的需要执行的。在列表中编索引的操作将从开头或结尾遍历列表(从靠近指定索引的一端)。

同时,与ArrayList一样此实现不是同步的。

(以上摘自JDK 6.0 API)。

二、源码分析

2.1、定义

首先我们先看LinkedList的定义:

public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable

从这段代码中我们可以清晰地看出LinkedList继承AbstractSequentialList,实现List、Deque、Cloneable、Serializable。其中AbstractSequentialList提供了 List 接口的骨干实现,从而最大限度地减少了实现受“连续访问”数据存储(如链接列表)支持的此接口所需的工作,从而以减少实现List接口的复杂度。Deque一个线性 collection,支持在两端插入和移除元素,定义了双端队列的操作。

2.2、属性

在LinkedList中提供了两个基本属性size、header。

private transient Entry<E> header = new Entry<E>(null, null, null);
private transient int size = 0;

其中size表示的LinkedList的大小,header表示链表的表头,Entry为节点对象。

private static class Entry<E> {
        E element;        //元素节点
        Entry<E> next;    //下一个元素
        Entry<E> previous;  //上一个元素

        Entry(E element, Entry<E> next, Entry<E> previous) {
            this.element = element;
            this.next = next;
            this.previous = previous;
        }
    }

上面为Entry对象的源代码,Entry为LinkedList的内部类,它定义了存储的元素。该元素的前一个元素、后一个元素,这是典型的双向链表定义方式。

2.3、构造方法

LinkedList提高了两个构造方法:LinkedLis()和LinkedList(Collection<? extends E> c)。

/**
     *  构造一个空列表。
     */
    public LinkedList() {
        header.next = header.previous = header;
    }

    /**
     *  构造一个包含指定 collection 中的元素的列表,这些元素按其 collection 的迭代器返回的顺序排列。
     */
    public LinkedList(Collection<? extends E> c) {
        this();
        addAll(c);
    }

LinkedList()构造一个空列表。里面没有任何元素,仅仅只是将header节点的前一个元素、后一个元素都指向自身。

LinkedList(Collection<? extends E> c): 构造一个包含指定 collection 中的元素的列表,这些元素按其 collection 的迭代器返回的顺序排列。该构造函数首先会调用LinkedList(),构造一个空列表,然后调用了addAll()方法将Collection中的所有元素添加到列表中。以下是addAll()的源代码:

/**
     *  添加指定 collection 中的所有元素到此列表的结尾,顺序是指定 collection 的迭代器返回这些元素的顺序。
     */
    public boolean addAll(Collection<? extends E> c) {
        return addAll(size, c);
    }

    /**
     * 将指定 collection 中的所有元素从指定位置开始插入此列表。其中index表示在其中插入指定collection中第一个元素的索引
     */
    public boolean addAll(int index, Collection<? extends E> c) {
        //若插入的位置小于0或者大于链表长度,则抛出IndexOutOfBoundsException异常
        if (index < 0 || index > size)
            throw new IndexOutOfBoundsException("Index: " + index + ", Size: " + size);
        Object[] a = c.toArray();
        int numNew = a.length;    //插入元素的个数
        //若插入的元素为空,则返回false
        if (numNew == 0)
            return false;
        //modCount:在AbstractList中定义的,表示从结构上修改列表的次数
        modCount++;
        //获取插入位置的节点,若插入的位置在size处,则是头节点,否则获取index位置处的节点
        Entry<E> successor = (index == size ? header : entry(index));
        //插入位置的前一个节点,在插入过程中需要修改该节点的next引用:指向插入的节点元素
        Entry<E> predecessor = successor.previous;
        //执行插入动作
        for (int i = 0; i < numNew; i++) {
            //构造一个节点e,这里已经执行了插入节点动作同时修改了相邻节点的指向引用
            //
            Entry<E> e = new Entry<E>((E) a[i], successor, predecessor);
            //将插入位置前一个节点的下一个元素引用指向当前元素
            predecessor.next = e;
            //修改插入位置的前一个节点,这样做的目的是将插入位置右移一位,保证后续的元素是插在该元素的后面,确保这些元素的顺序
            predecessor = e;
        }
        successor.previous = predecessor;
        //修改容量大小
        size += numNew;
        return true;
    }

在addAll()方法中,涉及到了两个方法,一个是entry(int index),该方法为LinkedList的私有方法,主要是用来查找index位置的节点元素。

/**
     * 返回指定位置(若存在)的节点元素
     */
    private Entry<E> entry(int index) {
        if (index < 0 || index >= size)
            throw new IndexOutOfBoundsException("Index: " + index + ", Size: "
                    + size);
        //头部节点
        Entry<E> e = header;
        //判断遍历的方向
        if (index < (size >> 1)) {
            for (int i = 0; i <= index; i++)
                e = e.next;
        } else {
            for (int i = size; i > index; i--)
                e = e.previous;
        }
        return e;
    }

从该方法有两个遍历方向中我们也可以看出LinkedList是双向链表,这也是在构造方法中为什么需要将header的前、后节点均指向自己。

如果对数据结构有点了解,对上面所涉及的内容应该问题,我们只需要清楚一点:LinkedList是双向链表,其余都迎刃而解。

由于篇幅有限,下面将就LinkedList中几个常用的方法进行源码分析。

2.4、增加方法

add(E e): 将指定元素添加到此列表的结尾。

public boolean add(E e) {
    addBefore(e, header);
        return true;
    }

该方法调用addBefore方法,然后直接返回true,对于addBefore()而已,它为LinkedList的私有方法。

private Entry<E> addBefore(E e, Entry<E> entry) {
        //利用Entry构造函数构建一个新节点 newEntry,
        Entry<E> newEntry = new Entry<E>(e, entry, entry.previous);
        //修改newEntry的前后节点的引用,确保其链表的引用关系是正确的
        newEntry.previous.next = newEntry;
        newEntry.next.previous = newEntry;
        //容量+1
        size++;
        //修改次数+1
        modCount++;
        return newEntry;
    }

在addBefore方法中无非就是做了这件事:构建一个新节点newEntry,然后修改其前后的引用。

LinkedList还提供了其他的增加方法:

add(int index, E element):在此列表中指定的位置插入指定的元素。

addAll(Collection<? extends E> c):添加指定 collection 中的所有元素到此列表的结尾,顺序是指定 collection 的迭代器返回这些元素的顺序。

addAll(int index, Collection<? extends E> c):将指定 collection 中的所有元素从指定位置开始插入此列表。

AddFirst(E e): 将指定元素插入此列表的开头。

addLast(E e): 将指定元素添加到此列表的结尾。

2.5、移除方法

remove(Object o):从此列表中移除首次出现的指定元素(如果存在)。该方法的源代码如下:

public boolean remove(Object o) {
        if (o==null) {
            for (Entry<E> e = header.next; e != header; e = e.next) {
                if (e.element==null) {
                    remove(e);
                    return true;
                }
            }
        } else {
            for (Entry<E> e = header.next; e != header; e = e.next) {
                if (o.equals(e.element)) {
                    remove(e);
                    return true;
                }
            }
        }
        return false;
    }

该方法首先会判断移除的元素是否为null,然后迭代这个链表找到该元素节点,最后调用remove(Entry<E> e),remove(Entry<E> e)为私有方法,是LinkedList中所有移除方法的基础方法,如下:

private E remove(Entry<E> e) {
        if (e == header)
            throw new NoSuchElementException();

        //保留被移除的元素:要返回
        E result = e.element;

        //将该节点的前一节点的next指向该节点后节点
        e.previous.next = e.next;
        //将该节点的后一节点的previous指向该节点的前节点
        //这两步就可以将该节点从链表从除去:在该链表中是无法遍历到该节点的
        e.next.previous = e.previous;
        //将该节点归空
        e.next = e.previous = null;
        e.element = null;
        size--;
        modCount++;
        return result;
    }

其他的移除方法:

clear(): 从此列表中移除所有元素。

remove():获取并移除此列表的头(第一个元素)。

remove(int index):移除此列表中指定位置处的元素。

remove(Objec o):从此列表中移除首次出现的指定元素(如果存在)。

removeFirst():移除并返回此列表的第一个元素。

removeFirstOccurrence(Object o):从此列表中移除第一次出现的指定元素(从头部到尾部遍历列表时)。

removeLast():移除并返回此列表的最后一个元素。

removeLastOccurrence(Object o):从此列表中移除最后一次出现的指定元素(从头部到尾部遍历列表时)。

2.5、查找方法

对于查找方法的源码就没有什么好介绍了,无非就是迭代,比对,然后就是返回当前值。

get(int index):返回此列表中指定位置处的元素。

getFirst():返回此列表的第一个元素。

getLast():返回此列表的最后一个元素。

indexOf(Object o):返回此列表中首次出现的指定元素的索引,如果此列表中不包含该元素,则返回 -1。

lastIndexOf(Object o):返回此列表中最后出现的指定元素的索引,如果此列表中不包含该元素,则返回 -1。

java提高篇---LinkedList的更多相关文章

  1. java提高篇(二二)-----LinkedList

    摘自http://blog.csdn.net/chenssy/article/details/18099417  java提高篇(二二)-----LinkedList 一.概述 LinkedList与 ...

  2. Java提高篇(三二)-----List总结

    前面LZ已经充分介绍了有关于List接口的大部分知识,如ArrayList.LinkedList.Vector.Stack,通过这几个知识点可以对List接口有了比较深的了解了.只有通过归纳总结的知识 ...

  3. java提高篇(二九)-----Vector

    在java提高篇(二一)-–ArrayList.java提高篇(二二)-LinkedList,详细讲解了ArrayList.linkedList的原理和实现过程,对于List接口这里还介绍一个它的实现 ...

  4. Java提高篇(三二)-----List总结

    前面LZ已经充分介绍了有关于List接口的大部分知识,如ArrayList.LinkedList.Vector.Stack,通过这几个知识点能够对List接口有了比較深的了解了.仅仅有通过归纳总结的知 ...

  5. Java提高篇——对象克隆(复制)

    假如说你想复制一个简单变量.很简单: int apples = 5; int pears = apples; 不仅仅是int类型,其它七种原始数据类型(boolean,char,byte,short, ...

  6. Java提高篇(三三)-----Map总结

    在前面LZ详细介绍了HashMap.HashTable.TreeMap的实现方法,从数据结构.实现原理.源码分析三个方面进行阐述,对这个三个类应该有了比较清晰的了解,下面LZ就Map做一个简单的总结. ...

  7. Java提高篇(三一)-----Stack

    在Java中Stack类表示后进先出(LIFO)的对象堆栈.栈是一种非常常见的数据结构,它采用典型的先进后出的操作方式完成的.每一个栈都包含一个栈顶,每次出栈是将栈顶的数据取出,如下: Stack通过 ...

  8. java提高篇(三十)-----Iterator

    迭代对于我们搞Java的来说绝对不陌生.我们常常使用JDK提供的迭代接口进行Java集合的迭代. Iterator iterator = list.iterator(); while(iterator ...

  9. Java提高篇(二八)------TreeSet

    与HashSet是基于HashMap实现一样,TreeSet同样是基于TreeMap实现的.在<Java提高篇(二七)-----TreeMap>中LZ详细讲解了TreeMap实现机制,如果 ...

随机推荐

  1. UML: 状态机图

    摘自http://www.umlonline.org/school/viewthread.php?tid=39 活动图将流程分解为一个一个的活动,通过活动的先后顺序来展示流程:而状态机图从某个物品的状 ...

  2. Web Project配置Hirbernate

    1:首先找到hibernate-release-4.1.9.Final.zip\hibernate-release-4.1.9.Final\lib\required ,把required里的所有jar ...

  3. linux for java programer

    http://www.kancloud.cn/digest/javaxviii/126781 .查找文件 find / -name filename.txt根据名称查找/目录下的filename.tx ...

  4. java经典小算法

    package com.shb.java; public class Demo4 { /**时间有限 先不写文字了 自己随便敲的 * @param args * @author shaobn */ p ...

  5. 夺命雷公狗---Thinkphp----13之前台的头尾分离和导航分离

    我们在实际的开发中往往网站的头尾都是分离开来的,而且tp这点做的也很人性化,他给我们留了一个include标签可以直接引入网站的头尾部分. 我们要做的网站当然也不例外,头尾一样分离开来: 我们先用浏览 ...

  6. [tp3.2.1]开启URL(重写模式),省略URL中的index.php

    重写模式(省略url中的index.php) 在apache配置文件httpd.conf中,查找 1.mod_rewrite.so, 启动此模块 2.AllowOverride , 值= All 3. ...

  7. Floyd算法核心代码证明

    Flody  大家都知道这个最终模版: for(int k=1;k<=n;k++) for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) dis[i ...

  8. NOIP200301乒乓球

    NOIP200301乒乓球 [问题背景] 国际乒联现在主席沙拉拉自从上任以来就立志于推行一系列改革,以推动乒乓球运动在全球的普及.其中11分制改革引起了很大的争议,有一部分球 员因为无法适应新规则只能 ...

  9. innodb double write buffer

    两次写是innodb的一个重要特性,目的是为了保证在异常down机或者没电的情况下,保证数据的安全可靠.一次是往内存的double write buffer中写,一次是在刷共享表空间的连续128个页. ...

  10. Linux 编程中的API函数和系统调用的关系【转】

    转自:http://blog.chinaunix.net/uid-25968088-id-3426027.html 原文地址:Linux 编程中的API函数和系统调用的关系 作者:up哥小号 API: ...