/*
求ax+b x属于区间[L,R];范围内素数的个数。
a*R+b<=10^12 ; R-L+1<=10^6 枚举,超时。
1.如果GCD(a,b)>1 那么a+b 2*a+b ..都会是合数。此时只有判断b是否为素数。 2.如果GCD(a,b)=1 那么就可以列式子
ax+b %p = 0 其中p为素数。 如果满足,那么ax+b就是合数。
筛选整个区间即可。 由于最大的数字是10^12,只能被sqrt(10^12)的素数整除,所以筛选10^6内的素数。
由于区间L,R 10^6,开一个bool hash[ ]。 ax+b % py = 0 ===> ax+py = -b; 根据扩展欧几里得求出 最小的x,此时的x可以为0. while(x<0) x+p; 求出最小的x,关键还要求出第一个满足在区间[ L ,R ]里的数字。 temp = L%p;
x = x - temp; while(a*(L+x)+b<=p) { //关于此处等号,是一个问题 既然a*x+b 是合数,怎么会=p,加了也不会错。
x = x + p;
} 这样的L+x就是区间[L ,R]里的第一个满足的数字。
而且x可以为0,刚好用hash的时候,直接对x进行哈希。 while(x<(R-L+1)){//不能等于,从0 --R-L 有 R-L+1个了。
hash[x] = false;
x = x+p;
} 3.最后求出结果。扫一遍哈希。 需要注意的是,由于a*x+b <=2的情况,所以对x==0 || x<=1 进行特判。
*/
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
#include<math.h>
using namespace std;
typedef long long LL; const int maxn = 1e6+;
int prime[maxn],len = ;
bool s [maxn];
bool hash1[maxn];
void init()
{
int i,j;
memset(s,true,sizeof(s));
for(i=;i<maxn;i++)
{
if(s[i]==false) continue;
prime[++len] = i;
for(j=i*;j<maxn;j=j+i)
s[j]=false;
}
s[] = s[] = false;
}
bool isprime(LL n)
{
LL i,ans;
if(n<maxn) return s[n];
ans = (LL)sqrt(n*1.0); for(i=; i<=len && prime[i]<=ans; i++)
{
if(n%prime[i]==) return false;
}
return true;
}
LL Ex_GCD(LL a,LL b,LL &x,LL& y)
{
if(b==)
{
x=;
y=;
return a;
}
LL g=Ex_GCD(b,a%b,x,y);
LL hxl=x-(a/b)*y;
x=y;
y=hxl;
return g;
}
int main()
{
LL a,b,L,U,x,y;
LL i,p;
int t = ;
init();
while(scanf("%I64d",&a)>)
{
if(a==)break;
scanf("%I64d%I64d%I64d",&b,&L,&U);
LL g = Ex_GCD(a,b,x,y);
if(g>)
{
if(L== && isprime(b))
printf("Case %d: 1\n",++t);
else printf("Case %d: 0\n",++t);
}
else if(g==)/** gcd(a,b) == 1 **/
{
memset(hash1,true,sizeof(hash1));
if(L==)
hash1[] = isprime(b);
if(L<=)
hash1[-L] = isprime(a+b);
LL length = U-L+;
LL MAX = a*U+b;
for(i=; i<=len; i++)
{
p = prime[i];
if(a%p==)continue;
if(p*p>MAX)break;; g = Ex_GCD(a,p,x,y);// ax+py = -b;
x = (x*-b) % p;
while(x<) x=x+p; LL temp = L%p;
x = x - temp;
while(x<) x=x+p; while(a*(x+L)+b<=p)
{
x = x+p;
}
while(x<length)
{
hash1[x]=false;
x=x+p;
}
}
LL hxl = ;
for(i=; i<length; i++) if(hash1[i]==true) hxl++;
printf("Case %d: %I64d\n",++t,hxl);
}
}
return ;
}

hnu Dirichlet's Theorem的更多相关文章

  1. Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  2. Dirichlet's Theorem on Arithmetic Progression

    poj3006 Dirichlet's Theorem on Arithmetic Progressions 很显然这是一题有关于素数的题目. 注意数据的范围,爆搜超时无误. 这里要用到筛选法求素数. ...

  3. POJ 3006 Dirichlet's Theorem on Arithmetic Progressions (素数)

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  4. poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】

    题目地址:http://poj.org/problem?id=3006 刷了好多水题,来找回状态...... Dirichlet's Theorem on Arithmetic Progression ...

  5. POJ 3006 Dirichlet's Theorem on Arithmetic Progressions 素数 难度:0

    http://poj.org/problem?id=3006 #include <cstdio> using namespace std; bool pm[1000002]; bool u ...

  6. poj 3006 Dirichlet's Theorem on Arithmetic Progressions

    题目大意:a和d是两个互质的数,则序列a,a+d,a+2d,a+3d,a+4d ...... a+nd 中有无穷多个素数,给出a和d,找出序列中的第n个素数 #include <cstdio&g ...

  7. 【POJ3006】Dirichlet's Theorem on Arithmetic Progressions(素数筛法)

    简单的暴力筛法就可. #include <iostream> #include <cstring> #include <cmath> #include <cc ...

  8. Dirichlet's Theorem on Arithmetic Progressions POJ - 3006 线性欧拉筛

    题意 给出a d n    给出数列 a,a+d,a+2d,a+3d......a+kd 问第n个数是几 保证答案不溢出 直接线性筛模拟即可 #include<cstdio> #inclu ...

  9. Dirichlet's Theorem on Arithmetic Progressions

    http://poj.org/problem?id=3006 #include<stdio.h> #include<math.h> int is_prime(int n) { ...

随机推荐

  1. nyist 518 取球游戏

    http://acm.nyist.net/JudgeOnline/problem.php?pid=518 取球游戏 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 今 ...

  2. [原创]java WEB学习笔记55:Struts2学习之路---详解struts2 中 Action,如何访问web 资源,解耦方式(使用 ActionContext,实现 XxxAware 接口),耦合方式(通过ServletActionContext,通过实现 ServletRequestAware, ServletContextAware 等接口的方式)

    本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...

  3. 【皇甫】☀PPT里的小玩意

    第三次写博客了,感觉写的蛮有趣的,在写的同时,回顾了知识点,又上手操作了一遍,印象更加深刻了,尽管今天写的和那些像JAVA啦,HTML啦,C#啦,没多大关系(个人理解),但确实我们经常能用到的.比如说 ...

  4. 变形--矩阵 matrix()

    matrix() 是一个含六个值的(a,b,c,d,e,f)变换矩阵,用来指定一个2D变换,相当于直接应用一个[a b c d e f]变换矩阵.就是基于水平方向(X轴)和垂直方向(Y轴)重新定位元素 ...

  5. CCF真题之日期计算

    201509-2 日期计算 问题描述 给定一个年份y和一个整数d,问这一年的第d天是几月几日? 注意闰年的2月有29天.满足下面条件之一的是闰年: 1) 年份是4的整数倍,而且不是100的整数倍: 2 ...

  6. JSon_零基础_002_将List类型数组转换为JSon格式的对象字符串,返回给界面

    将List类型数组转换为JSon格式的对象字符串,返回给界面 所需要导入的包: 编写bean: package com.west.webcourse.po; /** * 第01步:编写bean类, * ...

  7. asp上传图片提示 ADODB.Stream 错误 '800a0bbc'的解决方法

    asp上传图片提示 ADODB.Stream 错误 '800a0bbc' 有这个提示有很多问题导致.权限是常见一种.这个不多说,还有一个有点怪的就是 windows2008显示系统时间的格式竟然是:2 ...

  8. 夺命雷公狗ThinkPHP项目之----企业网站8之栏目的添加完善(无限极分类的完成)

    我们刚才只是完成了添加的一部分,但是我们的上级分类也不能永远都是只有一个死的嘛,所以我们需要对她进行修改: 我们先将add方法里面的数据查出来再说: 然后在模板页进行遍历: 展示效果如下所示: 虽然是 ...

  9. java 操作excel 文件

    JAVA EXCEL API:是一开放源码项目,通过它Java开发人员可以读取Excel文件的内容.创建新的Excel文件.更新已经存在的Excel文件.使用该API非Windows操作系统也可以通过 ...

  10. 静态关键字static

    //静态关键字的使用static //类里面的普通成员是属于对象的,不是属于类的(调用的时候是用对象调用) //什么叫做静态的:类静态成员是属于类的,不是属于每个对象的 //定义静态成员用static ...