hnu Dirichlet's Theorem
/*
求ax+b x属于区间[L,R];范围内素数的个数。
a*R+b<=10^12 ; R-L+1<=10^6 枚举,超时。
1.如果GCD(a,b)>1 那么a+b 2*a+b ..都会是合数。此时只有判断b是否为素数。 2.如果GCD(a,b)=1 那么就可以列式子
ax+b %p = 0 其中p为素数。 如果满足,那么ax+b就是合数。
筛选整个区间即可。 由于最大的数字是10^12,只能被sqrt(10^12)的素数整除,所以筛选10^6内的素数。
由于区间L,R 10^6,开一个bool hash[ ]。 ax+b % py = 0 ===> ax+py = -b; 根据扩展欧几里得求出 最小的x,此时的x可以为0. while(x<0) x+p; 求出最小的x,关键还要求出第一个满足在区间[ L ,R ]里的数字。 temp = L%p;
x = x - temp; while(a*(L+x)+b<=p) { //关于此处等号,是一个问题 既然a*x+b 是合数,怎么会=p,加了也不会错。
x = x + p;
} 这样的L+x就是区间[L ,R]里的第一个满足的数字。
而且x可以为0,刚好用hash的时候,直接对x进行哈希。 while(x<(R-L+1)){//不能等于,从0 --R-L 有 R-L+1个了。
hash[x] = false;
x = x+p;
} 3.最后求出结果。扫一遍哈希。 需要注意的是,由于a*x+b <=2的情况,所以对x==0 || x<=1 进行特判。
*/
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
#include<math.h>
using namespace std;
typedef long long LL; const int maxn = 1e6+;
int prime[maxn],len = ;
bool s [maxn];
bool hash1[maxn];
void init()
{
int i,j;
memset(s,true,sizeof(s));
for(i=;i<maxn;i++)
{
if(s[i]==false) continue;
prime[++len] = i;
for(j=i*;j<maxn;j=j+i)
s[j]=false;
}
s[] = s[] = false;
}
bool isprime(LL n)
{
LL i,ans;
if(n<maxn) return s[n];
ans = (LL)sqrt(n*1.0); for(i=; i<=len && prime[i]<=ans; i++)
{
if(n%prime[i]==) return false;
}
return true;
}
LL Ex_GCD(LL a,LL b,LL &x,LL& y)
{
if(b==)
{
x=;
y=;
return a;
}
LL g=Ex_GCD(b,a%b,x,y);
LL hxl=x-(a/b)*y;
x=y;
y=hxl;
return g;
}
int main()
{
LL a,b,L,U,x,y;
LL i,p;
int t = ;
init();
while(scanf("%I64d",&a)>)
{
if(a==)break;
scanf("%I64d%I64d%I64d",&b,&L,&U);
LL g = Ex_GCD(a,b,x,y);
if(g>)
{
if(L== && isprime(b))
printf("Case %d: 1\n",++t);
else printf("Case %d: 0\n",++t);
}
else if(g==)/** gcd(a,b) == 1 **/
{
memset(hash1,true,sizeof(hash1));
if(L==)
hash1[] = isprime(b);
if(L<=)
hash1[-L] = isprime(a+b);
LL length = U-L+;
LL MAX = a*U+b;
for(i=; i<=len; i++)
{
p = prime[i];
if(a%p==)continue;
if(p*p>MAX)break;; g = Ex_GCD(a,p,x,y);// ax+py = -b;
x = (x*-b) % p;
while(x<) x=x+p; LL temp = L%p;
x = x - temp;
while(x<) x=x+p; while(a*(x+L)+b<=p)
{
x = x+p;
}
while(x<length)
{
hash1[x]=false;
x=x+p;
}
}
LL hxl = ;
for(i=; i<length; i++) if(hash1[i]==true) hxl++;
printf("Case %d: %I64d\n",++t,hxl);
}
}
return ;
}
hnu Dirichlet's Theorem的更多相关文章
- Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏
Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- Dirichlet's Theorem on Arithmetic Progression
poj3006 Dirichlet's Theorem on Arithmetic Progressions 很显然这是一题有关于素数的题目. 注意数据的范围,爆搜超时无误. 这里要用到筛选法求素数. ...
- POJ 3006 Dirichlet's Theorem on Arithmetic Progressions (素数)
Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】
题目地址:http://poj.org/problem?id=3006 刷了好多水题,来找回状态...... Dirichlet's Theorem on Arithmetic Progression ...
- POJ 3006 Dirichlet's Theorem on Arithmetic Progressions 素数 难度:0
http://poj.org/problem?id=3006 #include <cstdio> using namespace std; bool pm[1000002]; bool u ...
- poj 3006 Dirichlet's Theorem on Arithmetic Progressions
题目大意:a和d是两个互质的数,则序列a,a+d,a+2d,a+3d,a+4d ...... a+nd 中有无穷多个素数,给出a和d,找出序列中的第n个素数 #include <cstdio&g ...
- 【POJ3006】Dirichlet's Theorem on Arithmetic Progressions(素数筛法)
简单的暴力筛法就可. #include <iostream> #include <cstring> #include <cmath> #include <cc ...
- Dirichlet's Theorem on Arithmetic Progressions POJ - 3006 线性欧拉筛
题意 给出a d n 给出数列 a,a+d,a+2d,a+3d......a+kd 问第n个数是几 保证答案不溢出 直接线性筛模拟即可 #include<cstdio> #inclu ...
- Dirichlet's Theorem on Arithmetic Progressions
http://poj.org/problem?id=3006 #include<stdio.h> #include<math.h> int is_prime(int n) { ...
随机推荐
- nyist 518 取球游戏
http://acm.nyist.net/JudgeOnline/problem.php?pid=518 取球游戏 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 今 ...
- [原创]java WEB学习笔记55:Struts2学习之路---详解struts2 中 Action,如何访问web 资源,解耦方式(使用 ActionContext,实现 XxxAware 接口),耦合方式(通过ServletActionContext,通过实现 ServletRequestAware, ServletContextAware 等接口的方式)
本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...
- 【皇甫】☀PPT里的小玩意
第三次写博客了,感觉写的蛮有趣的,在写的同时,回顾了知识点,又上手操作了一遍,印象更加深刻了,尽管今天写的和那些像JAVA啦,HTML啦,C#啦,没多大关系(个人理解),但确实我们经常能用到的.比如说 ...
- 变形--矩阵 matrix()
matrix() 是一个含六个值的(a,b,c,d,e,f)变换矩阵,用来指定一个2D变换,相当于直接应用一个[a b c d e f]变换矩阵.就是基于水平方向(X轴)和垂直方向(Y轴)重新定位元素 ...
- CCF真题之日期计算
201509-2 日期计算 问题描述 给定一个年份y和一个整数d,问这一年的第d天是几月几日? 注意闰年的2月有29天.满足下面条件之一的是闰年: 1) 年份是4的整数倍,而且不是100的整数倍: 2 ...
- JSon_零基础_002_将List类型数组转换为JSon格式的对象字符串,返回给界面
将List类型数组转换为JSon格式的对象字符串,返回给界面 所需要导入的包: 编写bean: package com.west.webcourse.po; /** * 第01步:编写bean类, * ...
- asp上传图片提示 ADODB.Stream 错误 '800a0bbc'的解决方法
asp上传图片提示 ADODB.Stream 错误 '800a0bbc' 有这个提示有很多问题导致.权限是常见一种.这个不多说,还有一个有点怪的就是 windows2008显示系统时间的格式竟然是:2 ...
- 夺命雷公狗ThinkPHP项目之----企业网站8之栏目的添加完善(无限极分类的完成)
我们刚才只是完成了添加的一部分,但是我们的上级分类也不能永远都是只有一个死的嘛,所以我们需要对她进行修改: 我们先将add方法里面的数据查出来再说: 然后在模板页进行遍历: 展示效果如下所示: 虽然是 ...
- java 操作excel 文件
JAVA EXCEL API:是一开放源码项目,通过它Java开发人员可以读取Excel文件的内容.创建新的Excel文件.更新已经存在的Excel文件.使用该API非Windows操作系统也可以通过 ...
- 静态关键字static
//静态关键字的使用static //类里面的普通成员是属于对象的,不是属于类的(调用的时候是用对象调用) //什么叫做静态的:类静态成员是属于类的,不是属于每个对象的 //定义静态成员用static ...