zoj 1010 (线段相交判断+多边形求面积)
链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=10
Area
Time Limit: 2 Seconds Memory Limit: 65536 KB Special Judge
Jerry, a middle school student, addicts himself to mathematical research. Maybe the problems he has thought are really too easy to an expert. But as an amateur, especially as a 15-year-old boy, he had done very well. He is so rolling in thinking the mathematical problem that he is easily to try to solve every problem he met in a mathematical way. One day, he found a piece of paper on the desk. His younger sister, Mary, a four-year-old girl, had drawn some lines. But those lines formed a special kind of concave polygon by accident as Fig. 1 shows.
Fig. 1 The lines his sister had drawn
"Great!" he thought, "The polygon seems so regular. I had just learned how to calculate the area of triangle, rectangle and circle. I'm sure I can find out how to calculate the area of this figure." And so he did. First of all, he marked the vertexes in the polygon with their coordinates as Fig. 2 shows. And then he found the result--0.75 effortless.
Fig.2 The polygon with the coordinates of vertexes
Of course, he was not satisfied with the solution of such an easy problem. "Mmm, if there's a random polygon on the paper, then how can I calculate the area?" he asked himself. Till then, he hadn't found out the general rules on calculating the area of a random polygon. He clearly knew that the answer to this question is out of his competence. So he asked you, an erudite expert, to offer him help. The kind behavior would be highly appreciated by him.
Input
The input data consists of several figures. The first line of the input for each figure contains a single integer n, the number of vertexes in the figure. (0 <= n <= 1000).
In the following n lines, each contain a pair of real numbers, which describes the coordinates of the vertexes, (xi, yi). The figure in each test case starts from the first vertex to the second one, then from the second to the third, ���� and so on. At last, it closes from the nth vertex to the first one.
The input ends with an empty figure (n = 0). And this figure not be processed.
Output
As shown below, the output of each figure should contain the figure number and a colon followed by the area of the figure or the string "Impossible".
If the figure is a polygon, compute its area (accurate to two fractional digits). According to the input vertexes, if they cannot form a polygon (that is, one line intersects with another which shouldn't be adjoined with it, for example, in a figure with four lines, the first line intersects with the third one), just display "Impossible", indicating the figure can't be a polygon. If the amount of the vertexes is not enough to form a closed polygon, the output message should be "Impossible" either.
Print a blank line between each test cases.
Sample Input
5
0 0
0 1
0.5 0.5
1 1
1 0
4
0 0
0 1
1 0
1 1
0
Output for the Sample Input
Figure 1: 0.75
Figure 2: Impossible
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
一开始看错题意,WA了好多次,要注意与当前线段相邻接的线段不判断
主要就是第一个线段,要跳过与下一条线段的相交性,以及最后一条线段的相交性,其他线段只需要向下跳过一个线段判断相交即可
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <math.h> #define MAXX 1005
#define eps 1e-8
using namespace std; typedef struct
{
double x;
double y;
}point; typedef struct
{
point st;
point ed;
}line; point p[MAXX];
line li[MAXX]; double crossProduct(point a,point b,point c)
{
return (c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x);
} double dist(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} bool xy(double x,double y){ return x < y - eps; }
bool dy(double x,double y){ return x > y + eps; }
bool xyd(double x,double y){ return x < y + eps; }
bool dyd(double x,double y){ return x > y - eps; }
bool dd(double x,double y){ return fabs(x-y)<eps; } bool onSegment(point a,point b,point c)
{
double maxx=max(a.x,b.x);
double maxy=max(a.y,b.y);
double minx=min(a.x,b.x);
double miny=min(a.y,b.y); if(dd(crossProduct(a,b,c),0.0)&&xyd(c.x,maxx)&&dyd(c.x,minx)
&&xyd(c.y,maxy)&&dyd(c.y,miny))
return true;
return false;
} bool segIntersect(point p1,point p2,point p3,point p4)
{
double d1=crossProduct(p3,p4,p1);
double d2=crossProduct(p3,p4,p2);
double d3=crossProduct(p1,p2,p3);
double d4=crossProduct(p1,p2,p4); if(xy(d1*d2,0.0)&&xy(d3*d4,0.0))
return true;
if(dd(d1,0.0)&&onSegment(p3,p4,p1))
return true;
if(dd(d2,0.0)&&onSegment(p3,p4,p2))
return true;
if(dd(d3,0.0)&&onSegment(p1,p2,p3))
return true;
if(dd(d4,0.0)&&onSegment(p1,p2,p4))
return true;
return false;
} double Area(int n)
{
double ans=0.0; for(int i=; i<n; i++)
{
ans+=crossProduct(p[],p[i-],p[i]);
}
return fabs(ans)/2.0;
} int main()
{
int n,m,i,j;
double x,y;
int cas=;
while(scanf("%d",&n)!=EOF&&n)
{
for(i=; i<n; i++)
{
scanf("%lf%lf",&p[i].x,&p[i].y);
} for(i=; i<n-; i++)
{
li[i].st.x=p[i].x;
li[i].st.y=p[i].y;
li[i].ed.x=p[i+].x;
li[i].ed.y=p[i+].y;
}
li[n-].st.x=p[n-].x;
li[n-].st.y=p[n-].y;
li[n-].ed.x=p[].x;
li[n-].ed.y=p[].y;
bool flag=false;
for(i=; i<n; i++)
{
for(j=i+; j<n; j++)
{
if(i == && j == n-)continue;
/*if((li[i].st.x == li[j].st.x && li[i].st.y == li[j].st.y)
|| li[i].st.x == li[j].ed.x && li[i].st.y == li[j].ed.y
|| li[i].ed.x == li[j].st.x && li[i].ed.y == li[j].st.y
|| li[i].ed.x == li[j].ed.x && li[i].ed.y == li[j].ed.y)
continue;*/
if(segIntersect(li[i].st,li[i].ed,li[j].st,li[j].ed))
{
flag=true;
break;
}
}
} if(flag || n<)
{
printf("Figure %d: Impossible\n",cas++);
}
else
{
double ans=Area(n);
printf("Figure %d: %.2lf\n",cas++,ans);
}
printf("\n");
}
return ;
}
zoj 1010 (线段相交判断+多边形求面积)的更多相关文章
- POJ 1039 Pipe(直线和线段相交判断,求交点)
Pipe Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8280 Accepted: 2483 Description ...
- 计算几何基础——矢量和叉积 && 叉积、线段相交判断、凸包(转载)
转载自 http://blog.csdn.net/william001zs/article/details/6213485 矢量 如果一条线段的端点是有次序之分的话,那么这种线段就称为 有向线段,如果 ...
- POJ 3449 Geometric Shapes(判断几个不同图形的相交,线段相交判断)
Geometric Shapes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 1243 Accepted: 524 D ...
- ACM1558两线段相交判断和并查集
Segment set Problem Description A segment and all segments which are connected with it compose a seg ...
- POJ 1066 Treasure Hunt(线段相交判断)
Treasure Hunt Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4797 Accepted: 1998 Des ...
- POJ 3304 Segments (直线和线段相交判断)
Segments Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7739 Accepted: 2316 Descript ...
- Area---poj1265(皮克定理+多边形求面积)
题目链接:http://poj.org/problem?id=1265 题意是:有一个机器人在矩形网格中行走,起始点是(0,0),每次移动(dx,dy)的偏移量,已知,机器人走的图形是一个多边形,求这 ...
- HDU 1255 覆盖的面积(线段树:扫描线求面积并)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1255 题目大意:给你若干个矩形,让你求这些矩形重叠两次及以上的部分的面积. 解题思路:模板题,跟HDU ...
- poj2653线段相交判断
Stan has n sticks of various length. He throws them one at a time on the floor in a random way. Afte ...
随机推荐
- COM编程之一 组件
[1]组件产生的背景 一个应用程序通常是由单个二进制文件组成的. 当应用程序版本发布后一般不会发生任何变化,对于操作系统.硬件以及客户需求的改变都必须要等到修复源代码后且整个应用程序被重新编译才可处理 ...
- 为 Macbook 增加锁屏热键技巧
第一步,找到“系统偏好设置”下的“安全性与隐私”,在“通用”页里勾上“进入睡眠或开始屏幕保护程序后立即要求输入密码”. 第二步,要用快捷键启动屏幕保护程序,相对复杂一点.在“应用程序”里找到“Auto ...
- WPF single instance
转自:http://www.cnblogs.com/z_lb/archive/2012/09/16/2687487.html public partial class App : Applicatio ...
- ectouch第七讲 之ECshop模板机制整理
网上的资源感觉还是有些用,可以看看,帮助理解,ECshop模板机制整理原文:http://blog.sina.com.cn/s/blog_6900af430100nkn8.html 一.模板引擎: E ...
- ectouch第三讲之加载调用机制
加载与调用机制: 当地址栏键入/mobile,就会加载入口文件index.php:从入口文件里面会调用EcTouch.php公共入口文件,当进入公共入口文件,会定义一些变量,然后加载公 ...
- Meisell-Lehmer算法(统计较大数据里的素数)
http://acm.hdu.edu.cn/showproblem.php?pid=5901 1e11的数据量,这道题用这个算法花了202ms. #include<bits/stdc++.h&g ...
- hdu 1061 Rightmost Digit
解决本题使用数学中的快速幂取余: 该方法总结挺好的:具体参考http://www.cnblogs.com/PegasusWang/archive/2013/03/13/2958150.html #in ...
- php获取json文件数据并动态修改网站头部文件meta信息 --基于CI框架
话不多说了.直接开始吧 (如果有中文.请注意json只认utf-8编码) 首先你需要有一个json文件数据 { "index": { ...
- Self Numbers 分类: POJ 2015-06-12 20:07 14人阅读 评论(0) 收藏
Self Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22101 Accepted: 12429 De ...
- Scrapy集成selenium+PhantomJS+代理IP 解析js动态内容
转载于:http://blog.aizhet.com/web/16523.html