$\newcommand{\align}[1]{\begin{align*}#1\end{align*}}$做这题需要一个前置知识:多项式的多点求值

多项式的多点求值:给定多项式$f(x)$和$x_{1\cdots n}$,要求出$f(1)\cdots f(n)$

首先,我们可以找到$g_i(x)$使得$f(x)=(x-x_i)g_i(x)+C$(就是把$f(x)$对$x-x_i$取模),当$x=x_i$,我们得到$f(x_i)=C$,即$f(x_i)=\left.f(x)\%(x-x_i)\right|_{x=x_i}$,所以我们要求的是$f(x)\%(x-x_i)$,直接对$n$个$x_i$暴力求是$O(n^2\log_2n)$的,比暴力还慢,但一个很显然的事实是:如果$g(x)=h(x)r(x)$,那么$f(x)\%g(x)\%h(x)=f(x)\%h(x)$,所以我们这样分治求解:如果要求出$f(x)$在$x_{l\cdots r}$的取值,那么就递归计算$\align{f(x)\%\prod\limits_{i=l}^r(x-x_i)}$在$x_{l\cdots mid}$和$x_{mid+1\cdots r}$的取值,因为有取模,所以$f(x)$的次数被降了下来,总时间复杂度$T(n)=2T\left(\dfrac n2\right)+O(n\log_2n)=O(n\log_2^2n)$,注意要用分治FFT预处理出$\align{\prod\limits_{i=l}^r(x-x_i)}$,时间复杂度也是$O(n\log_2^2n)$,空间复杂度$O(n\log_2n)$

然后是这道题,因为是全局操作,所以我们定义$f_i(x)$表示经过$i$次操作后,原来的$x$会变成$f_i(x)$,每次操作要么是将$f(x)$加上一个常数,要么是把它取倒数,所以它的形式肯定是$f(x)=\dfrac{ax+b}{cx+d}=p+\dfrac q{x+t}$($c=0$要特殊处理)

所以我们要求的答案是$\align{\sum\limits_{i=1}^nf(x_i)}$,展开得到$\align{pn+q\sum\limits_{i=1}^n\dfrac1{x_i+t}}$,在这个式子中,$x_i$是常数,而$t$随着修改变化($m$个取值),所以我们把它看成关于$t$的函数$\align{g(t)=\sum\limits_{i=1}^n\dfrac1{x_i+t}}=\dfrac{\sum\limits_{i=1}^n\prod\limits_{j\ne i}(x_j+t)}{\prod\limits_{i=1}^n(x_i+t)}$,分母可以分治FFT算,分子是分母的导数,算出来后直接多点求值就做完了...

注意:凡是涉及分治FFT,需要new内存的,一定要注意不能访问超限,这时assert就派上用场了>_<

#include<stdio.h>
#include<string.h>
#include<assert.h>
const int mod=998244353,maxn=262144;
typedef long long ll;
int mul(int a,int b){return a*(ll)b%mod;}
int ad(int a,int b){return(a+b)%mod;}
int de(int a,int b){return(a-b)%mod;}
void swap(int&a,int&b){
	int c=a;
	a=b;
	b=c;
}
int max(int a,int b){return a>b?a:b;}
int pow(int a,int b){
	int s=1;
	while(b){
		if(b&1)s=mul(s,a);
		a=mul(a,a);
		b>>=1;
	}
	return s;
}
int rev[maxn],N,iN;
void pre(int n){
	int i,k;
	for(N=1,k=0;N<n;N<<=1)k++;
	for(i=0;i<N;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1));
	iN=pow(N,mod-2);
}
void ntt(int*a,int on){
	int i,j,k,t,w,wn;
	for(i=0;i<N;i++){
		if(i<rev[i])swap(a[i],a[rev[i]]);
	}
	for(i=2;i<=N;i<<=1){
		wn=pow(3,(on==1)?(mod-1)/i:(mod-1-(mod-1)/i));
		for(j=0;j<N;j+=i){
			w=1;
			for(k=0;k<i>>1;k++){
				t=mul(w,a[i/2+j+k]);
				a[i/2+j+k]=de(a[j+k],t);
				a[j+k]=ad(a[j+k],t);
				w=mul(w,wn);
			}
		}
	}
	if(on==-1){
		for(i=0;i<N;i++)a[i]=mul(a[i],iN);
	}
}
int t0[maxn];
void getinv(int*a,int*b,int n){
	if(n==1){
		b[0]=pow(a[0],mod-2);
		return;
	}
	int i;
	getinv(a,b,n>>1);
	pre(n<<1);
	memset(t0,0,N<<2);
	memcpy(t0,a,n<<2);
	ntt(t0,1);
	ntt(b,1);
	for(i=0;i<N;i++)b[i]=mul(b[i],2-mul(b[i],t0[i]));
	ntt(b,-1);
	for(i=n;i<N;i++)b[i]=0;
}
int ta[maxn],tb[maxn],tc[maxn];
void add(int*a,int n,int*b,int m,int*c,int&k){
	k=max(n,m);
	for(int i=0;i<=k;i++)tc[i]=ad(a[i],b[i]);
	while(k!=0&&tc[k]==0)k--;
	memcpy(c,tc,(k+1)<<2);
}
void dec(int*a,int n,int*b,int m,int*c,int&k){
	k=max(n,m);
	for(int i=0;i<=k;i++)tc[i]=de(a[i],b[i]);
	while(k!=0&&tc[k]==0)k--;
	memcpy(c,tc,(k+1)<<2);
}
void reverse(int*a,int n){
	for(int i=0;i<=n>>1;i++)swap(a[i],a[n-i]);
}
void mul(int*a,int n,int*b,int m,int*c,int&k){
	int i;
	k=n+m;
	pre(k+1);
	memset(ta,0,N<<2);
	memset(tb,0,N<<2);
	memcpy(ta,a,(n+1)<<2);
	memcpy(tb,b,(m+1)<<2);
	ntt(ta,1);
	ntt(tb,1);
	for(i=0;i<N;i++)tc[i]=mul(ta[i],tb[i]);
	ntt(tc,-1);
	memcpy(c,tc,(k+1)<<2);
}
int t1[maxn];
void div(int*a,int n,int*b,int m,int*c,int&k){
	if(n<m){
		k=0;
		return;
	}
	int i,rn;
	for(rn=1;rn<n-m+1;rn<<=1);
	memset(ta,0,rn<<3);
	memset(tb,0,rn<<3);
	memcpy(ta,a,(n+1)<<2);
	memcpy(tb,b,(m+1)<<2);
	reverse(tb,m);
	for(i=rn;i<=m;i++)tb[i]=0;
	memset(t1,0,rn<<3);
	getinv(tb,t1,rn);
	pre(rn<<1);
	reverse(ta,n);
	for(i=rn;i<=n;i++)ta[i]=0;
	ntt(ta,1);
	ntt(t1,1);
	for(i=0;i<N;i++)tc[i]=mul(ta[i],t1[i]);
	ntt(tc,-1);
	k=n-m;
	reverse(tc,k);
	while(k!=0&&tc[k]==0)k--;
	memcpy(c,tc,(k+1)<<2);
}
int len;
void modulo(int*a,int n,int*b,int m,int*c,int&k){
	if(n<m){
		k=n;
		memcpy(c,a,(n+1)<<2);
		return;
	}
	div(a,n,b,m,t1,k);
	mul(t1,k,b,m,t1,k);
	//assert(max(n,k)<=len);
	dec(a,n,t1,k,c,k);
}
struct frac{//(ax+b)/(cx+d)
	int a,b,c,d;
	void add(int k){
		a=ad(a,mul(c,k));
		b=ad(b,mul(d,k));
	}
	void inv(){
		swap(a,c);
		swap(b,d);
	}
}fr[60010];
int x[100010],op[60010],v[60010],ti[60010],*tr[240010],M;
void build(int l,int r,int x){
	if(l==r){
		tr[x]=new int[2];
		tr[x][0]=-ti[l];
		tr[x][1]=1;
		return;
	}
	int mid=(l+r)>>1;
	build(l,mid,x<<1);
	build(mid+1,r,x<<1|1);
	tr[x]=new int[r-l+2];
	mul(tr[x<<1],mid-l+1,tr[x<<1|1],r-mid,tr[x],x);
}
void solve(int*f,int n,int l,int r,int x,int*ans){
	int mid=(l+r)>>1,*now;
	now=new int[r-l+1];
	len=r-l;
	modulo(f,n,tr[x],r-l+1,now,n);
	if(l==r){
		ans[l]=now[0];
		return;
	}
	solve(now,n,l,mid,x<<1,ans);
	solve(now,n,mid+1,r,x<<1|1,ans);
}
int t2[maxn],t3[maxn];
int*solve2(int l,int r){
	int mid,*res,*L,*R,len;
	res=new int[r-l+2];
	if(l==r){
		res[1]=1;
		res[0]=x[l];
		return res;
	}
	mid=(l+r)>>1;
	L=solve2(l,mid);
	R=solve2(mid+1,r);
	mul(L,mid-l+1,R,r-mid,res,len);
	return res;
}
int ans1[60010],ans2[60010],ans[60010],up[100010];
int main(){
	int n,m,i,p,q,del,*res;
	scanf("%d%d",&n,&m);
	for(i=1;i<=n;i++)scanf("%d",x+i);
	fr->a=fr->d=1;
	fr->b=fr->c=0;
	for(i=1;i<=m;i++){
		fr[i]=fr[i-1];
		scanf("%d",op+i);
		if(op[i]==1){
			scanf("%d",v+i);
			fr[i].add(v[i]);
		}else
			fr[i].inv();
		if(op[i]==2){
			M++;
			ti[M]=mul(fr[i].d,pow(fr[i].c,mod-2));
		}
	}
	del=0;
	for(i=1;i<=n;i++)ans[0]=ad(ans[0],x[i]);
	if(M==0){
		for(i=1;i<=m;i++){
			del=ad(del,v[i]);
			printf("%d\n",ad(ans[0],mul(del,n)));
		}
		return 0;
	}
	build(1,M,1);
	res=solve2(1,n);
	for(i=1;i<=n;i++)up[i-1]=mul(res[i],i);
	solve(up,n-1,1,M,1,ans1);
	solve(res,n,1,M,1,ans2);
	M=del=0;
	for(i=1;i<=m;i++){
		if(op[i]==1){
			del=ad(del,v[i]);
			printf("%d\n",ad(ad(ans[M],mul(n,del)),mod));
		}else{
			M++;
			if(fr[i].c==0){
				printf("%d\n",ans[M]=ad(mul(ad(mul(fr[i].a,ans[0]),mul(fr[i].b,n)),pow(fr[i].d,mod-2)),mod));
				continue;
			}
			p=mul(fr[i].a,pow(fr[i].c,mod-2));
			q=mul(de(mul(fr[i].b,fr[i].c),mul(fr[i].a,fr[i].d)),pow(mul(fr[i].c,fr[i].c),mod-2));
			ans[M]=ad(mul(p,n),mul(q,mul(ans1[M],pow(ans2[M],mod-2))));
			printf("%d\n",ad(ans[M],mod));
			del=0;
		}
	}
}

[UOJ182]a^-1 + b problem的更多相关文章

  1. UOJ182 a^-1 + b problem 解题报告

    题目描述 有一个长度为\(n(n\le 10^5)\)的数列,在模\(M\)意义下进行\(m(m \le50000)\)次操作,每次操作形如以下两种形式: 1 \(x\) 表示每个数加\(x(0 \l ...

  2. GOOD BYE OI

    大米饼正式退役了,OI给我带来很多东西 我会的数学知识基本都在下面了 博客园的评论区问题如果我看到了应该是会尽力回答的... 这也是我作为一个OIer最后一次讲课的讲稿 20190731 多项式乘法 ...

  3. 1199 Problem B: 大小关系

    求有限集传递闭包的 Floyd Warshall 算法(矩阵实现) 其实就三重循环.zzuoj 1199 题 链接 http://acm.zzu.edu.cn:8000/problem.php?id= ...

  4. No-args constructor for class X does not exist. Register an InstanceCreator with Gson for this type to fix this problem.

    Gson解析JSON字符串时出现了下面的错误: No-args constructor for class X does not exist. Register an InstanceCreator ...

  5. C - NP-Hard Problem(二分图判定-染色法)

    C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:262144 ...

  6. Time Consume Problem

    I joined the NodeJS online Course three weeks ago, but now I'm late about 2 weeks. I pay the codesch ...

  7. Programming Contest Problem Types

        Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...

  8. hdu1032 Train Problem II (卡特兰数)

    题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能.    (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...

  9. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

随机推荐

  1. [poj 2796]单调栈

    题目链接:http://poj.org/problem?id=2796 单调栈可以O(n)得到以每个位置为最小值,向左右最多扩展到哪里. #include<cstdio> #include ...

  2. Codeforces Round #524 (Div. 2) A. Petya and Origami

    A. Petya and Origami 题目链接:https://codeforc.es/contest/1080/problem/A 题意: 给出n,k,k表示每个礼品里面sheet的数量(礼品种 ...

  3. angular js的Inline Array Annotation的理解

    inline Array annotation的形式是: someModule.controller('MyController', ['$scope', 'greeter', function($s ...

  4. 【CF1023E】Down or Right(交互,贪心)

    题意: n<=500 思路:From https://blog.csdn.net/csdnjiangshan/article/details/81813227 #include<cstdi ...

  5. vnc无法显示桌面

    转载   以下是我的正确配置,解决上述问题,附带说明:  修改后的~/.vnc/xstartup #!/bin/sh # Uncomment the following two lines for n ...

  6. expect基础及实例

    expect基础及实例 http://blog.csdn.net/zhuying_linux/article/details/6900805

  7. ReadOnly与Enabled

    txtDlrCode.ReadOnly = true; 1.当设置为只读,文本框有点击事件,点击该文本框还是可以响应点击事件 2.设置为只读,C#后台无法取得文本框的值,txtDlrCode.Text ...

  8. 《Java编程思想》笔记 第七章 复用类

    1.组合 将其他类的对象引用置于新的类中. 3.继承 extends 从已知的一个类中派生出新的一个类,叫子类.子类实现了父类所有 非私有化 非静态 的属性和方法,并能根据自己的实际需求扩展出新的行为 ...

  9. Servlet中使用 Last-Modified、Expires和Cache-Control

    long now = System.currentTimeMillis(); long expires = System.currentTimeMillis() + (1000 * 60 * minu ...

  10. win32 listctrl控件右键菜单的实现

    HMENU Menu_list,Menu_all; POINT point; HINSTANCE hInstance;//下面代码放到BOOL WINAPI DialogProc下 case WM_C ...