$\newcommand{\align}[1]{\begin{align*}#1\end{align*}}$做这题需要一个前置知识:多项式的多点求值

多项式的多点求值:给定多项式$f(x)$和$x_{1\cdots n}$,要求出$f(1)\cdots f(n)$

首先,我们可以找到$g_i(x)$使得$f(x)=(x-x_i)g_i(x)+C$(就是把$f(x)$对$x-x_i$取模),当$x=x_i$,我们得到$f(x_i)=C$,即$f(x_i)=\left.f(x)\%(x-x_i)\right|_{x=x_i}$,所以我们要求的是$f(x)\%(x-x_i)$,直接对$n$个$x_i$暴力求是$O(n^2\log_2n)$的,比暴力还慢,但一个很显然的事实是:如果$g(x)=h(x)r(x)$,那么$f(x)\%g(x)\%h(x)=f(x)\%h(x)$,所以我们这样分治求解:如果要求出$f(x)$在$x_{l\cdots r}$的取值,那么就递归计算$\align{f(x)\%\prod\limits_{i=l}^r(x-x_i)}$在$x_{l\cdots mid}$和$x_{mid+1\cdots r}$的取值,因为有取模,所以$f(x)$的次数被降了下来,总时间复杂度$T(n)=2T\left(\dfrac n2\right)+O(n\log_2n)=O(n\log_2^2n)$,注意要用分治FFT预处理出$\align{\prod\limits_{i=l}^r(x-x_i)}$,时间复杂度也是$O(n\log_2^2n)$,空间复杂度$O(n\log_2n)$

然后是这道题,因为是全局操作,所以我们定义$f_i(x)$表示经过$i$次操作后,原来的$x$会变成$f_i(x)$,每次操作要么是将$f(x)$加上一个常数,要么是把它取倒数,所以它的形式肯定是$f(x)=\dfrac{ax+b}{cx+d}=p+\dfrac q{x+t}$($c=0$要特殊处理)

所以我们要求的答案是$\align{\sum\limits_{i=1}^nf(x_i)}$,展开得到$\align{pn+q\sum\limits_{i=1}^n\dfrac1{x_i+t}}$,在这个式子中,$x_i$是常数,而$t$随着修改变化($m$个取值),所以我们把它看成关于$t$的函数$\align{g(t)=\sum\limits_{i=1}^n\dfrac1{x_i+t}}=\dfrac{\sum\limits_{i=1}^n\prod\limits_{j\ne i}(x_j+t)}{\prod\limits_{i=1}^n(x_i+t)}$,分母可以分治FFT算,分子是分母的导数,算出来后直接多点求值就做完了...

注意:凡是涉及分治FFT,需要new内存的,一定要注意不能访问超限,这时assert就派上用场了>_<

#include<stdio.h>
#include<string.h>
#include<assert.h>
const int mod=998244353,maxn=262144;
typedef long long ll;
int mul(int a,int b){return a*(ll)b%mod;}
int ad(int a,int b){return(a+b)%mod;}
int de(int a,int b){return(a-b)%mod;}
void swap(int&a,int&b){
	int c=a;
	a=b;
	b=c;
}
int max(int a,int b){return a>b?a:b;}
int pow(int a,int b){
	int s=1;
	while(b){
		if(b&1)s=mul(s,a);
		a=mul(a,a);
		b>>=1;
	}
	return s;
}
int rev[maxn],N,iN;
void pre(int n){
	int i,k;
	for(N=1,k=0;N<n;N<<=1)k++;
	for(i=0;i<N;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1));
	iN=pow(N,mod-2);
}
void ntt(int*a,int on){
	int i,j,k,t,w,wn;
	for(i=0;i<N;i++){
		if(i<rev[i])swap(a[i],a[rev[i]]);
	}
	for(i=2;i<=N;i<<=1){
		wn=pow(3,(on==1)?(mod-1)/i:(mod-1-(mod-1)/i));
		for(j=0;j<N;j+=i){
			w=1;
			for(k=0;k<i>>1;k++){
				t=mul(w,a[i/2+j+k]);
				a[i/2+j+k]=de(a[j+k],t);
				a[j+k]=ad(a[j+k],t);
				w=mul(w,wn);
			}
		}
	}
	if(on==-1){
		for(i=0;i<N;i++)a[i]=mul(a[i],iN);
	}
}
int t0[maxn];
void getinv(int*a,int*b,int n){
	if(n==1){
		b[0]=pow(a[0],mod-2);
		return;
	}
	int i;
	getinv(a,b,n>>1);
	pre(n<<1);
	memset(t0,0,N<<2);
	memcpy(t0,a,n<<2);
	ntt(t0,1);
	ntt(b,1);
	for(i=0;i<N;i++)b[i]=mul(b[i],2-mul(b[i],t0[i]));
	ntt(b,-1);
	for(i=n;i<N;i++)b[i]=0;
}
int ta[maxn],tb[maxn],tc[maxn];
void add(int*a,int n,int*b,int m,int*c,int&k){
	k=max(n,m);
	for(int i=0;i<=k;i++)tc[i]=ad(a[i],b[i]);
	while(k!=0&&tc[k]==0)k--;
	memcpy(c,tc,(k+1)<<2);
}
void dec(int*a,int n,int*b,int m,int*c,int&k){
	k=max(n,m);
	for(int i=0;i<=k;i++)tc[i]=de(a[i],b[i]);
	while(k!=0&&tc[k]==0)k--;
	memcpy(c,tc,(k+1)<<2);
}
void reverse(int*a,int n){
	for(int i=0;i<=n>>1;i++)swap(a[i],a[n-i]);
}
void mul(int*a,int n,int*b,int m,int*c,int&k){
	int i;
	k=n+m;
	pre(k+1);
	memset(ta,0,N<<2);
	memset(tb,0,N<<2);
	memcpy(ta,a,(n+1)<<2);
	memcpy(tb,b,(m+1)<<2);
	ntt(ta,1);
	ntt(tb,1);
	for(i=0;i<N;i++)tc[i]=mul(ta[i],tb[i]);
	ntt(tc,-1);
	memcpy(c,tc,(k+1)<<2);
}
int t1[maxn];
void div(int*a,int n,int*b,int m,int*c,int&k){
	if(n<m){
		k=0;
		return;
	}
	int i,rn;
	for(rn=1;rn<n-m+1;rn<<=1);
	memset(ta,0,rn<<3);
	memset(tb,0,rn<<3);
	memcpy(ta,a,(n+1)<<2);
	memcpy(tb,b,(m+1)<<2);
	reverse(tb,m);
	for(i=rn;i<=m;i++)tb[i]=0;
	memset(t1,0,rn<<3);
	getinv(tb,t1,rn);
	pre(rn<<1);
	reverse(ta,n);
	for(i=rn;i<=n;i++)ta[i]=0;
	ntt(ta,1);
	ntt(t1,1);
	for(i=0;i<N;i++)tc[i]=mul(ta[i],t1[i]);
	ntt(tc,-1);
	k=n-m;
	reverse(tc,k);
	while(k!=0&&tc[k]==0)k--;
	memcpy(c,tc,(k+1)<<2);
}
int len;
void modulo(int*a,int n,int*b,int m,int*c,int&k){
	if(n<m){
		k=n;
		memcpy(c,a,(n+1)<<2);
		return;
	}
	div(a,n,b,m,t1,k);
	mul(t1,k,b,m,t1,k);
	//assert(max(n,k)<=len);
	dec(a,n,t1,k,c,k);
}
struct frac{//(ax+b)/(cx+d)
	int a,b,c,d;
	void add(int k){
		a=ad(a,mul(c,k));
		b=ad(b,mul(d,k));
	}
	void inv(){
		swap(a,c);
		swap(b,d);
	}
}fr[60010];
int x[100010],op[60010],v[60010],ti[60010],*tr[240010],M;
void build(int l,int r,int x){
	if(l==r){
		tr[x]=new int[2];
		tr[x][0]=-ti[l];
		tr[x][1]=1;
		return;
	}
	int mid=(l+r)>>1;
	build(l,mid,x<<1);
	build(mid+1,r,x<<1|1);
	tr[x]=new int[r-l+2];
	mul(tr[x<<1],mid-l+1,tr[x<<1|1],r-mid,tr[x],x);
}
void solve(int*f,int n,int l,int r,int x,int*ans){
	int mid=(l+r)>>1,*now;
	now=new int[r-l+1];
	len=r-l;
	modulo(f,n,tr[x],r-l+1,now,n);
	if(l==r){
		ans[l]=now[0];
		return;
	}
	solve(now,n,l,mid,x<<1,ans);
	solve(now,n,mid+1,r,x<<1|1,ans);
}
int t2[maxn],t3[maxn];
int*solve2(int l,int r){
	int mid,*res,*L,*R,len;
	res=new int[r-l+2];
	if(l==r){
		res[1]=1;
		res[0]=x[l];
		return res;
	}
	mid=(l+r)>>1;
	L=solve2(l,mid);
	R=solve2(mid+1,r);
	mul(L,mid-l+1,R,r-mid,res,len);
	return res;
}
int ans1[60010],ans2[60010],ans[60010],up[100010];
int main(){
	int n,m,i,p,q,del,*res;
	scanf("%d%d",&n,&m);
	for(i=1;i<=n;i++)scanf("%d",x+i);
	fr->a=fr->d=1;
	fr->b=fr->c=0;
	for(i=1;i<=m;i++){
		fr[i]=fr[i-1];
		scanf("%d",op+i);
		if(op[i]==1){
			scanf("%d",v+i);
			fr[i].add(v[i]);
		}else
			fr[i].inv();
		if(op[i]==2){
			M++;
			ti[M]=mul(fr[i].d,pow(fr[i].c,mod-2));
		}
	}
	del=0;
	for(i=1;i<=n;i++)ans[0]=ad(ans[0],x[i]);
	if(M==0){
		for(i=1;i<=m;i++){
			del=ad(del,v[i]);
			printf("%d\n",ad(ans[0],mul(del,n)));
		}
		return 0;
	}
	build(1,M,1);
	res=solve2(1,n);
	for(i=1;i<=n;i++)up[i-1]=mul(res[i],i);
	solve(up,n-1,1,M,1,ans1);
	solve(res,n,1,M,1,ans2);
	M=del=0;
	for(i=1;i<=m;i++){
		if(op[i]==1){
			del=ad(del,v[i]);
			printf("%d\n",ad(ad(ans[M],mul(n,del)),mod));
		}else{
			M++;
			if(fr[i].c==0){
				printf("%d\n",ans[M]=ad(mul(ad(mul(fr[i].a,ans[0]),mul(fr[i].b,n)),pow(fr[i].d,mod-2)),mod));
				continue;
			}
			p=mul(fr[i].a,pow(fr[i].c,mod-2));
			q=mul(de(mul(fr[i].b,fr[i].c),mul(fr[i].a,fr[i].d)),pow(mul(fr[i].c,fr[i].c),mod-2));
			ans[M]=ad(mul(p,n),mul(q,mul(ans1[M],pow(ans2[M],mod-2))));
			printf("%d\n",ad(ans[M],mod));
			del=0;
		}
	}
}

[UOJ182]a^-1 + b problem的更多相关文章

  1. UOJ182 a^-1 + b problem 解题报告

    题目描述 有一个长度为\(n(n\le 10^5)\)的数列,在模\(M\)意义下进行\(m(m \le50000)\)次操作,每次操作形如以下两种形式: 1 \(x\) 表示每个数加\(x(0 \l ...

  2. GOOD BYE OI

    大米饼正式退役了,OI给我带来很多东西 我会的数学知识基本都在下面了 博客园的评论区问题如果我看到了应该是会尽力回答的... 这也是我作为一个OIer最后一次讲课的讲稿 20190731 多项式乘法 ...

  3. 1199 Problem B: 大小关系

    求有限集传递闭包的 Floyd Warshall 算法(矩阵实现) 其实就三重循环.zzuoj 1199 题 链接 http://acm.zzu.edu.cn:8000/problem.php?id= ...

  4. No-args constructor for class X does not exist. Register an InstanceCreator with Gson for this type to fix this problem.

    Gson解析JSON字符串时出现了下面的错误: No-args constructor for class X does not exist. Register an InstanceCreator ...

  5. C - NP-Hard Problem(二分图判定-染色法)

    C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:262144 ...

  6. Time Consume Problem

    I joined the NodeJS online Course three weeks ago, but now I'm late about 2 weeks. I pay the codesch ...

  7. Programming Contest Problem Types

        Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...

  8. hdu1032 Train Problem II (卡特兰数)

    题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能.    (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...

  9. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

随机推荐

  1. namesilo注册域名用来做域名邮箱

    重要的话说三遍: (一定不要再国内注册域名,不要买国内的空间) (一定不要再国内注册域名,不要买国内的空间) (一定不要再国内注册域名,不要买国内的空间) 使用的是腾讯企业邮箱,有一个缺点:不支持自定 ...

  2. Windows下安装Mycat

    Mycat 首先在安装Mycat之前,需要安装JDK1.7以上,可以在cmd环境下输入 java -version 查看本地安装的java版本 如果未安装或者版本在1.7以下,请重新安装. 安装JDK ...

  3. oracle导入和导出和授权

    导入数据库: imp demo@orcl file=d:/bak_1023.dmp full=y ignore=y 导出数据库: @orcl file=d:/bak_1023.dmpexp yhtj/ ...

  4. oracle有关游标的知识

    一:前言 今天我自己第二次写游标,我擦,觉得自己在数据库方面需要很大的提高啊.今天遇到三个问题,第一个是oracle数据库中的数据拆分的问题,这个我用regexp_substr来进行解决,第二个问题就 ...

  5. Hackerrank [World CodeSprint 11] City Construction

    传送门:https://www.hackerrank.com/contests/world-codesprint-11/challenges/hackerland [题解] 因为加点每次加1个点1条边 ...

  6. Swift : missing argument label 'xxx' in call

    http://stackoverflow.com/questions/24050844/swift-missing-argument-label-xxx-in-call up vote37down v ...

  7. jsp页面点击打印按钮调用系统 的打印功能

    <script language=javascript> function prt() { var btn_obj = document.getElementById("prin ...

  8. 怎样用css来美化一个html页面

    # 转载请留言联系 我们都知道html写出来的东西是一个文本内容,很单调.和我们平时刷网页看到的内容不一样.那普通的网页是怎样对html超文本进行装饰的呢?没错,就是CSS. css的基本语法 选择器 ...

  9. MYSQL使用外键进行优化

    #转载请联系 假如你是京东的数据库管理员,你现在管理着这样一个数据库. mysql> select * from goods; +----+--------------------------- ...

  10. ORM- 图书系统查询

    图书信息系统 表结构设计 # 书 class Book(models.Model): title = models.CharField(max_length=32) publish_date = mo ...