Minimum Path Sum 题解

原创文章,拒绝转载

题目来源:https://leetcode.com/problems/minimum-path-sum/description/


Description

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example 1:

[[1,3,1],
[1,5,1],
[4,2,1]]

Given the above grid map, return 7. Because the path 1→3→1→1→1 minimizes the sum.

Solution

class Solution {
public:
int minPathSum(vector<vector<int> >& grid) {
if (grid.empty())
return 0;
int i, j;
int rowCount = grid.size();
int colCount = grid[0].size();
int **stepCount;
stepCount = new int*[rowCount]; stepCount[0] = new int[colCount];
stepCount[0][0] = grid[0][0];
for (i = 1; i < rowCount; i++) {
stepCount[i] = new int[colCount];
stepCount[i][0] = grid[i][0] + stepCount[i - 1][0];
}
for (j = 1; j < colCount; j++) {
stepCount[0][j] = grid[0][j] + stepCount[0][j - 1];
} for (i = 1; i < rowCount; i++) {
for (j = 1; j < colCount; j++) {
stepCount[i][j] = min(stepCount[i - 1][j], stepCount[i][j - 1]) + grid[i][j];
}
}
j = stepCount[rowCount - 1][colCount - 1];
for (i = 0; i < rowCount; i++)
delete [] stepCount[i];
delete [] stepCount;
return j;
}
};

解题描述

这道题其实本质上类似于经典的动态规划问题中的最小编辑距离问题,大概的方法还是差不多的,通过一个矩阵去计算所有的状态下的步数,最后返回右下角的点的步数即为最小的步数之和。

[Leetcode Week9]Minimum Path Sum的更多相关文章

  1. 【leetcode】Minimum Path Sum

    Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...

  2. LeetCode 64. Minimum Path Sum(最小和的路径)

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  3. [LeetCode] 64. Minimum Path Sum 最小路径和

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  4. LeetCode 64 Minimum Path Sum

    Problem: Given a m x n grid filled with non-negative numbers, find a path from top left to bottom ri ...

  5. 【leetcode】Minimum Path Sum(easy)

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  6. Java for LeetCode 064 Minimum Path Sum

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  7. 【题解】【矩阵】【DP】【Leetcode】Minimum Path Sum

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  8. C#解leetcode 64. Minimum Path Sum

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  9. leetcode:Minimum Path Sum(路线上元素和的最小值)【面试算法题】

    题目: Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right w ...

随机推荐

  1. 12.0 Excel表格读取

    Pycharm安装 xlrd 首先在xuexi目录下创建一个ExcelFile文件,让后在ExcelFile下创建一个Excel表格 创建表格时记得把单元格的格式设置为[文本] 我们设置为文本之后,存 ...

  2. python接口测试(二)——配置文件的使用

    在接口测试中,有些东西是固定不变的,比如url,若想更改的话就必须每个请求都更改,因此,可以放到配置文件中使用. 1.创建一个.ini的配置文件,如图: 2.读取配件文件中的内容,后续进行引用 #co ...

  3. python中logging的常用方法

    logging常用 # -*- coding:utf-8 -*- __author__ = "lgj" import os import sys import time impor ...

  4. Java IO学习--File类

    一.File类 File类具备一定的误导性,可能容易认为它指代的是文件,实际并非如此,它既能代表一个特定文件的名称,又能表示一个目录下一组文件的名称.简而言之,File类是文件或者目录路径名的抽象表示 ...

  5. 剑指offer-旋转数组的最小数字06

    题目描述 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转. 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素. 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋 ...

  6. php处理三级分类数据

    <?php // 链接数据库 $link = mysqli_connect('localhost','root','root'); if($link == null){ exit; } mysq ...

  7. not1,not2,bind1st,bind2nd

    例子需要包含头文件 #include <vector> #include <algorithm> #include <functional> bind1st和bin ...

  8. [GitHub] - Unity Timer

    https://github.com/akbiggs/UnityTimer#unity-timer Run actions after a delay in Unity3D. This library ...

  9. fetch_array()与fetch_assoc()的用法

    fetch_array()与fetch_assoc()用起来没有什么大的差别,主要是怎么用?fetch_array()如果单独作为while的条件,则能够取出结果集中的所有结果.如果单独作用于结果集, ...

  10. DES(Data Encryption Standard)数据加密标准

    DES算法入口参数 DES算法的入口参数有三个:Key.Data.Mode.其中Key为7个字节共56位,是DES算法的工作密钥.Data为8个字节64位,是要被加密或解密的数据;Mode为DES的工 ...