点此看题面

大致题意: 有\(N\)只从\(1\sim N\)编号的袜子,告诉你每只袜子的颜色,\(M\)组询问,每组询问给你一个区间\([L\sim R]\),让你求出小Z随机抽出\(2\)只袜子时有多大概率抽到两只颜色相同的袜子。

题意转换

假设这些袜子中共有\(K\)种颜色,则对于第\(i\)种颜色的袜子,抽到两次的概率为$$\frac{cnt[i](cnt[i]-1)}{(R-L+1)(R-L)}$$

那么,在整个区间中抽到两只相同颜色的袜子的概率就是$$\sum_{i=1}^K\frac{cnt[i](cnt[i]-1)}{(R-L+1)(R-L)}$$

即$$\frac{\sum_{i=1}^Kcnt[i](cnt[i]-1)}{(R-L+1)(R-L)}$$

莫队

这时,我们就不难发现,对于一个区间,只要知道这个区间中每种颜色的袜子的出现次数就可以了。于是,就很容易想到用莫队来求解。

我们只要记录每种颜色的袜子的出现次数,并在每次更新指针的同时更新\(ans\)即可。

代码

#include<bits/stdc++.h>
#define LL long long
#define N 50000
#define M 50000
using namespace std;
LL n,Q,a[N+5],pos[N+5],ans1[M+5],ans2[M+5],cnt[N+5];
struct Query
{
LL l,r,pos;
}q[M+5];
inline char tc()
{
static char ff[100000],*A=ff,*B=ff;
return A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(LL &x)
{
x=0;char ch;
while(!isdigit(ch=tc()));
while(x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
}
inline void write(LL x)
{
if(x<0) putchar('-'),x=-x;
if(x>9) write(x/10);
putchar(x%10+'0');
}
inline bool cmp(Query x,Query y)
{
return pos[x.l]<pos[y.l]||(pos[x.l]==pos[y.l]&&(pos[x.l]&1?x.r<y.r:x.r>y.r));
}
inline LL gcd(LL x,LL y)//求最大公因数,为之后的约分做准备
{
return y?gcd(y,x%y):x;
}
int main()
{
register LL i;
for(read(n),read(Q),i=1;i<=n;++i) read(a[i]),pos[i]=(i-1)/sqrt(n)+1;
for(i=1;i<=Q;++i) read(q[i].l),read(q[i].r),q[i].pos=i;
sort(q+1,q+Q+1,cmp);
LL ans=0,L=q[1].l,R=q[1].r;
for(i=L;i<=R;++i)//先暴力求解第一个问题的答案
{
if(++cnt[a[i]]) ans-=((cnt[a[i]]-1)*(cnt[a[i]]-2));
ans+=cnt[a[i]]*(cnt[a[i]]-1);
}
LL t1=ans,t2=(q[1].r-q[1].l+1)*(q[1].r-q[1].l),g=gcd(t1,t2);
ans1[q[1].pos]=t1/g,ans2[q[1].pos]=t2/g;
for(i=2;i<=Q;++i)
{
if(q[i].l==q[i].r)//题目中的附加说明,对于L=R的情况直接输出0/1
{
ans1[q[i].pos]=0,ans2[q[i].pos]=1;
continue;
}
while(L<q[i].l) ans-=cnt[a[L]]*(cnt[a[L]]-1),--cnt[a[L]],ans+=cnt[a[L]]*(cnt[a[L]]-1),++L;//若L指针小于当前询问的l,就先更新ans,再移动指针
while(L>q[i].l) --L,ans-=cnt[a[L]]*(cnt[a[L]]-1),++cnt[a[L]],ans+=cnt[a[L]]*(cnt[a[L]]-1);//若L指针大于当前询问的l,则操作顺序与上面的操作恰好相反
while(R>q[i].r) ans-=cnt[a[R]]*(cnt[a[R]]-1),--cnt[a[R]],ans+=cnt[a[R]]*(cnt[a[R]]-1),--R;//R指针的操作与L指针类似
while(R<q[i].r) ++R,ans-=cnt[a[R]]*(cnt[a[R]]-1),++cnt[a[R]],ans+=cnt[a[R]]*(cnt[a[R]]-1);
LL t1=ans,t2=(q[i].r-q[i].l+1)*(q[i].r-q[i].l),g=gcd(t1,t2);//注意约分
ans1[q[i].pos]=t1/g,ans2[q[i].pos]=t2/g;
}
for(i=1;i<=Q;++i) write(ans1[i]),putchar('/'),write(ans1[i]?ans2[i]:1),putchar('\n');
return 0;
}

【洛谷1494】[国家集训队] 小Z的袜子(莫队)的更多相关文章

  1. BZOJ 2038 [2009国家集训队]小Z的袜子 莫队

    2038: [2009国家集训队]小Z的袜子(hose) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Descriptionw ...

  2. P1494 [国家集训队]小Z的袜子/莫队学习笔记(误

    P1494 [国家集训队]小Z的袜子 题目描述 作为一个生活散漫的人,小\(Z\)每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小\(Z\)再也无法忍受这恼人的找袜子过程,于是他 ...

  3. 洛谷 P1494 [国家集训队] 小Z的袜子

    题目概述: 小Z把N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬. 你的任务 ...

  4. BZOJ2038 [2009国家集训队]小Z的袜子 莫队+分块

    作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z把这N只袜子从1到N编号,然后从 ...

  5. 洛谷P1494 [国家集训队]小Z的袜子

    Code: #include<cstdio> #include<iostream> #include<algorithm> #include<cstring& ...

  6. 洛谷 P1494 [国家集训队]小Z的袜子(莫队)

    题目链接:https://www.luogu.com.cn/problem/P1494 一道很经典的莫队模板题,然而每道莫队题的大体轮廓都差不多. 首先莫队是一种基于分块的算法,它的显著特点就是: 能 ...

  7. [日常摸鱼]bzoj2038[2009国家集训队]小Z的袜子-莫队算法

    今天来学了下莫队-这题应该就是这个算法的出处了 一篇别人的blog:https://www.cnblogs.com/Paul-Guderian/p/6933799.html 题意:一个序列,$m$次询 ...

  8. BZOJ2120/洛谷P1903 [国家集训队] 数颜色 [带修改莫队]

    BZOJ传送门:洛谷传送门 数颜色 题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R ...

  9. BZOJ 2038: [2009国家集训队]小Z的袜子

    二次联通门 : BZOJ 2038: [2009国家集训队]小Z的袜子 /* BZOJ 2038: [2009国家集训队]小Z的袜子 莫队经典题 但是我并不认为此题适合入门.. Answer = ∑ ...

  10. 【洛谷】1494:[国家集训队]小Z的袜子【莫队】

    P1494 [国家集训队]小Z的袜子 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… ...

随机推荐

  1. PIE SDK SFIM融合

    1.算法功能简介 SFIM 融合方法全称为基于平滑滤波的亮度变换.基本原理是将高分辨率影像通过低通滤波抑制其高频空间信息保留低频信息,再将原高分辨率影像与通过低通滤波的高分辨率影像进行比值运算,以抵消 ...

  2. 0前端 框架 库_千万别去碰js呀 混合APP_webAPP_美工 选有类型的语言,比如TypeScript

    常用知识点,技巧 添加库到本地: (举例 element-ui) 用npm命令行把包下载到本地 在电脑里找到资源文件,比如 C:\Users\XiaoCong\AppData\Roaming\npm\ ...

  3. 一步步带你做vue后台管理框架

    1.登录 (1).  一步步带你做vue后台管理框架(三)——登录功能 2.权限控制 (1)  基于Vue2.0实现后台系统权限控制 (2) 手摸手,带你用vue撸后台 系列二(登录权限篇)

  4. [转]一种可以避免数据迁移的分库分表scale-out扩容方式

    原文地址:http://jm-blog.aliapp.com/?p=590 目前绝大多数应用采取的两种分库分表规则 mod方式 dayofweek系列日期方式(所有星期1的数据在一个库/表,或所有?月 ...

  5. 从XCodeGhost事件看软件来源鉴别的重要性

    事件 事件引爆于9月18日乌云网公布的一则分析报告:"XCode编译器里有鬼 – XCodeGhost样本分析",这份纯粹的技术分析报告引发中国iOS生态链的众多开发者的关注. 引 ...

  6. Linux VFS机制简析(一)

    Linux VFS机制简析(一) 本文主要基于Linux内核文档,简单分析Linux VFS机制,以期对编写新的内核文件系统(通常是给分布式文件系统编写内核客户端)的场景有所帮助. 个人渊源 切入正文 ...

  7. MYSQL冷知识——ON DUPLICATE KEY 批量增删改

    一 有个需求要批量增删改,并且是混合的,也就是仅不存在才增. 删简单,因为有个deleteStaute之类的字段,删除本质上就是就是一个修改 所以就是实现批量混合增改,然而组长说mysql不支持混合增 ...

  8. 在nginx上部署django项目--------Gunicorn+Django+nginx+mysql

    一.安装nginx 以前的博客我有写,这里就不写了 http://www.cnblogs.com/wt11/p/6420442.html 二.安装mysql 我用的mysql5.7  64位的二进制包 ...

  9. vue分页

    1.依赖文件 <link href="/css/index.css" rel="stylesheet" type="text/css" ...

  10. jdbc封装DBUtil

    1.编写实体类User public class User { private Integer id; private String username; private Integer age; pr ...