Polycarp is practicing his problem solving skill. He has a list of n problems with difficulties a1,a2,…,an, respectively. His plan is to practice for exactly k days. Each day he has to solve at least one problem from his list. Polycarp solves the problems in the order they are given in his list, he cannot skip any problem from his list. He has to solve all n problems in exactly k days.

Thus, each day Polycarp solves a contiguous sequence of (consecutive) problems from the start of the list. He can't skip problems or solve them multiple times. As a result, in k days he will solve all the n problems.

The profit of the j-th day of Polycarp's practice is the maximum among all the difficulties of problems Polycarp solves during the j-th day (i.e. if he solves problems with indices from l to r during a day, then the profit of the day is maxl≤i≤rai). The total profit of his practice is the sum of the profits over all k days of his practice.

You want to help Polycarp to get the maximum possible total profit over all valid ways to solve problems. Your task is to distribute all n problems between k days satisfying the conditions above in such a way, that the total profit is maximum.

For example, if n=8,k=3 and a=[5,4,2,6,5,1,9,2], one of the possible distributions with maximum total profit is: [5,4,2],[6,5],[1,9,2]. Here the total profit equals 5+6+9=20.

Input

The first line of the input contains two integers n and k (1≤k≤n≤2000) — the number of problems and the number of days, respectively.

The second line of the input contains n integers a1,a2,…,an (1≤ai≤2000) — difficulties of problems in Polycarp's list, in the order they are placed in the list (i.e. in the order Polycarp will solve them).

Output

In the first line of the output print the maximum possible total profit.

In the second line print exactly k positive integers t1,t2,…,tk (t1+t2+⋯+tk must equal n), where tj means the number of problems Polycarp will solve during the j-th day in order to achieve the maximum possible total profit of his practice.

If there are many possible answers, you may print any of them.

Examples

Input

8 3

5 4 2 6 5 1 9 2

Output

20

3 2 3

Input

5 1

1 1 1 1 1

Output

1

5

Input

4 2

1 2000 2000 2

Output

4000

2 2

Note

The first example is described in the problem statement.

In the second example there is only one possible distribution.

In the third example the best answer is to distribute problems in the following way: [1,2000],[2000,2]. The total profit of this distribution is 2000+2000=4000.

【题意】:给定一个数字n和m和大小为n的数组,将数组分为m个区间,要求区间最大值之和最大值以及分区大小(不唯一)。

【分析】:用结构体记录数值和位置,由大到小排序得到前k个数值之和就是最大值。难点是求分区大小,可以建立一个新数组id记录前k大数的位置,注意位置需要从小到大排序。比如第一个样例就是0 3 6,那么分区为3 3 2——>3-0/6-3/8-6

【代码】:

#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 10;
int n,m;
struct node
{
int num,pos;
}a[N];
vector<int> v;
int id[N];
bool cmp(node a,node b)
{
return a.num > b.num;
}
int main()
{
scanf("%d%d",&n,&m);
int ans = 0;
for(int i=0;i<n;i++)
{
scanf("%d",&a[i].num);
a[i].pos = i;
}
sort(a,a+n,cmp);
for(int i=0; i<m; i++)
{
id[i] = a[i].pos;
ans += a[i].num;
}
cout<<ans<<endl;
id[m]=n;
sort(id,id+m+1);
printf("%d ",id[1]);
for(int i=1; i<m-1; i++)
{
printf("%d ",id[i+1]-id[i]);
}
if(m!=1) printf("%d\n",id[m]-id[m-1]);
}

CF 1006B Polycarp's Practice【贪心】的更多相关文章

  1. CF #374 (Div. 2) D. 贪心,优先队列或set

    1.CF #374 (Div. 2)   D. Maxim and Array 2.总结:按绝对值最小贪心下去即可 3.题意:对n个数进行+x或-x的k次操作,要使操作之后的n个数乘积最小. (1)优 ...

  2. CF 435B Pasha Maximizes(贪心)

    题目链接: [传送门][1] Pasha Maximizes time limit per test:1 second     memory limit per test:256 megabytes ...

  3. [CF #288-C] Anya and Ghosts (贪心)

    题目链接:http://codeforces.com/contest/508/problem/C 题目大意:给你三个数,m,t,r,代表晚上有m个幽灵,我有无限支蜡烛,每支蜡烛能够亮t秒,房间需要r支 ...

  4. cf 605A Sorting Railway Cars 贪心 简单题

    其实就是求总长度 - 一个最长“连续”自序列的长度 最长“连续”自序列即一个最长的lis,并且这个lis的值刚好是连续的,比如4,5,6... 遍历一遍,贪心就是了 遍历到第i个时,此时值为a[i], ...

  5. CF 1141C Polycarp Restores Permutation

    Description An array of integers p1,p2,…,pnp1,p2,…,pn is called a permutation if it contains each nu ...

  6. CF D. Walking Between Houses (贪心)

    题意: 现在有n个房子排成一列,编号为1~n,起初你在第1个房子里,现在你要进行k次移动,每次移动一都可以从一个房子i移动到另外一个其他的房子j里(i != j),移动的距离为|j - i|.问你进过 ...

  7. CF:322D - Ciel and Duel 贪心 或者 DP 我用的贪心 。。难道sort跟qsort是不一样的么?

    D. Ciel and Duel time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  8. CF 360E Levko and Game——贪心

    题目:http://codeforces.com/contest/360/problem/E 官方题解与证明:http://codeforces.com/blog/entry/9529 一条可以调整的 ...

  9. nyoj 1216——整理图书 CF 229D—— Towers——————【dp+贪心】

    整理图书 时间限制:3000 ms  |  内存限制:65535 KB 难度:5   描述 小明是图书鹳狸猿,他有很多很多的书堆在了一起摆在了架子上,每摞书是横着放的,而且每摞书是订好的 是一个整体, ...

随机推荐

  1. WebSocket简单介绍(1)

    HTML5作为下一代WEB标准,拥有许多引人注目的新特性,如Canvas.本地存储.多媒体编程接口.WebSocket等等.今天我们就来看看具有“Web TCP”之称的WebSocket. WebSo ...

  2. 感觉自己应该重新读一次Javascript

    我自己也有一本Javascript书籍,是自己上大学的时候学校给提供的,现在,我依旧带着这本书.我决定要把这本书在重新温习一下.然后,开启下面的Javascript之旅.这是我看到博客园一位园友写的, ...

  3. BZOJ4361 isn(动态规划+树状数组+容斥原理)

    首先dp出长度为i的不下降子序列个数,显然这可以树状数组做到O(n2logn). 考虑最后剩下的序列是什么,如果不管是否合法只是将序列删至只剩i个数,那么方案数显然是f[i]*(n-i)!.如果不合法 ...

  4. Windows关机过程分析与快速关机

    原文链接:http://blog.csdn.net/flyoxs/article/details/3710367 Windows开机和关机慢,很多时候慢得令人抓狂.特别是做嵌入式开发时(如XPE和Wi ...

  5. [Leetcode] Swap nodes in pairs 成对交换结点

    Given a linked list, swap every two adjacent nodes and return its head. For example,Given1->2-> ...

  6. BZOJ3223: Tyvj 1729 文艺平衡树 无旋Treap

    一开始光知道pushdown却忘了pushup......... #include<cstdio> #include<iostream> #include<cstring ...

  7. 如何使用Navicat恢复数据库脚本

    Navicat 可以做数据库备份,当然也可以做数据库脚本恢复了.操作很简单. 1.连接需要恢复的数据库.鼠标右键点击,选择[运行SQL文件] 2.在弹出的窗口中选择sql文件,继续下一步即可. 余不赘 ...

  8. 用boost::lexical_cast进行数值转换

    在STL库中,我们可以通过stringstream来实现字符串和数字间的转换: int i = 0;    stringstream ss; ss << "123";  ...

  9. C++ 中 string, char*, int 类型的相互转换

    一.int 1.int 转换成 string 1) to_string函数 —— c++11标准增加了全局函数std::to_string: string to_string (int val); s ...

  10. Install the Active Directory Administration Tools on Windows Server

    安装 Active Directory 管理工具 To manage your directory from an EC2 Windows instance, you need to install ...