题目链接:http://219.244.176.199/JudgeOnline/problem.php?id=1214

这是这次微软实习面试的一道题,题目大意就是:有一个n*m的矩阵,已知它每一行都是不严格递增的,而且每一行的任意数都比前一行的任意数大或等于。给你一个数k,请你判断k是否存在于矩阵中。

当时想到的方法是二分第一列,就能确定k位于哪一行,然后二分这一行,得到是否存在k。二分第一列的复杂度是O(logn),二分那一行的复杂度是O(logm),所以总的复杂度是O(logn+logm)。

不过上面的写法需要写两个二分。其实二维数组在内存中是连续的一段内存,所以我们可以直接把二维数组看成一个一维数组b,那么b[p]对应的就是a[p/m][p%m]。这样的话就可以直接进行一维数组的二分了。复杂度是O(logmn)。

其实两个的时间复杂度是一致的,只是写法第二种稍微简单一点。

代码:二分+二分

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <vector>
#include <string>
#define LL long long using namespace std; int a[][];
int n, m, q; void input()
{
for (int i = ; i < n; ++i)
for (int j = ; j < m; ++j)
scanf("%d", &a[i][j]);
} bool binSearch(int k)
{
int lt = , rt = n-, mid, row;
while (lt+ < rt)
{
mid = (lt+rt)>>;
if (a[mid][] <= k) lt = mid;
else rt = mid;
}
if (a[rt][] <= k) row = rt;
else row = lt; lt = ; rt = m-;
while (lt+ < rt)
{
mid = (lt+rt)>>;
if (a[row][mid] <= k) lt = mid;
else rt = mid;
}
if (a[row][lt] == k) return true;
if (a[row][rt] == k) return true;
return false;
} void work()
{
int k;
scanf("%d", &q);
for (int i = ; i < q; ++i)
{
scanf("%d", &k);
if (binSearch(k)) printf("Yes\n");
else printf("No\n");
}
} int main()
{
//freopen("test2.in", "r", stdin);
//freopen("test3.out", "w", stdout);
while (scanf("%d%d", &n, &m) != EOF)
{
input();
work();
} return ;
}

代码:看成一维二分

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <vector>
#include <string>
#define LL long long using namespace std; int a[][];
int n, m, q; void input()
{
for (int i = ; i < n; ++i)
for (int j = ; j < m; ++j)
scanf("%d", &a[i][j]);
} bool binSearch(int k)
{
int lt = , rt = n*m-, mid;
while (lt+ < rt)
{
mid = (lt+rt)>>;
if (a[mid/m][mid%m] <= k) lt = mid;
else rt = mid;
}
if (a[lt/m][lt%m] == k) return true;
if (a[rt/m][rt%m] == k) return true;
return false;
} void work()
{
int k;
scanf("%d", &q);
for (int i = ; i < q; ++i)
{
scanf("%d", &k);
if (binSearch(k)) printf("Yes\n");
else printf("No\n");
}
} int main()
{
//freopen("test2.in", "r", stdin);
//freopen("test3.out", "w", stdout);
while (scanf("%d%d", &n, &m) != EOF)
{
input();
work();
} return ;
}

ACM学习历程—SNNUOJ1214 矩阵1(二分)的更多相关文章

  1. ACM学习历程—SNNUOJ1215 矩阵2(二分 && dfs)

    http://219.244.176.199/JudgeOnline/problem.php?id=1215 这是这次微软和百度实习面试的一道题,题目大意就是:有一个n*m的矩阵,已知它每一行都是不严 ...

  2. ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...

  3. ACM学习历程—HDU5592 ZYB's Premutation(逆序数 && 树状数组 && 二分)(BestCoder Round #65 1003)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5592 题目大意就是给了每个[1, i]区间逆序对的个数,要求复原原序列. 比赛的时候2B了一发. 首先 ...

  4. ACM学习历程—HDU5587 Array(数学 && 二分 && 记忆化 || 数位DP)(BestCoder Round #64 (div.2) 1003)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5587 题目大意就是初始有一个1,然后每次操作都是先在序列后面添加一个0,然后把原序列添加到0后面,然后 ...

  5. ACM学习历程—UESTC 1222 Sudoku(矩阵)(2015CCPC H)

    题目链接:http://acm.uestc.edu.cn/#/problem/show/1226 题目大意就是构造一个行列和每个角的2*2都是1234的4*4矩阵. 用dfs暴力搜索,不过需要每一步进 ...

  6. ACM学习历程—UESTC 1215 Secrete Master Plan(矩阵旋转)(2015CCPC A)

    题目链接:http://acm.uestc.edu.cn/#/problem/show/1215 题目大意就是问一个2*2的矩阵能否通过旋转得到另一个. 代码: #include <iostre ...

  7. ACM学习历程—51NOD 1685 第K大区间2(二分 && 树状数组 && 中位数)

    http://www.51nod.com/contest/problem.html#!problemId=1685 这是这次BSG白山极客挑战赛的E题. 这题可以二分答案t. 关键在于,对于一个t,如 ...

  8. ACM学习历程—Hihocoder 1139 二分·二分答案(bfs)

    http://hihocoder.com/problemset/problem/1139 这题提示上写的是二分,但是感觉不二分应该也可以,至少题目是AC的... 二分的思想就是二分答案的值,看能不能在 ...

  9. ACM学习历程—Hihocoder 1288 Font Size(暴力 || 二分)

    http://hihocoder.com/problemset/problem/1288 这题是这次微软笔试的第一题,关键的是s的上限是min(w, h),这样s的范围只有到1000,这样就可以直接暴 ...

随机推荐

  1. UI组件之UIImage

    UIImageView:图像视图,用于在应用程序中显示图片 UIImage:是将图片文件转换为程序中的图片对象 UIImageView是UIImage的载体 方法一:用此方法创建图片对象,会将图片ca ...

  2. Parquet and ORC

    http://dongxicheng.org/mapreduce-nextgen/columnar-storage-parquet-and-orc/ 相比传统的行式存储引擎,列式存储引擎具有更高的压缩 ...

  3. Linux查看某个端口+gcc动态编译

    Linux下就: 1.lsof -i:端口号 2.netstat -tunlp|grep 端口号 gcc:动态编译 gcc –fpic –c file.c –o file.o gcc –shared ...

  4. 计算机网络概述---OSI参考模型

    应用层:所有能产生网络流量的程序,例如:qq等,txt记事本没有产生流量,所以不属于应用层: 表示层:在传输之前对应用层的数据进行加工或处理,例如:加密.压缩.传视频时二进制,传文档时ASCII码 等 ...

  5. P4271 [USACO18FEB]New Barns

    题目 P4271 [USACO18FEB]New Barns 做法 这题很长见识啊!! 知识点:两棵树\((A,B)\)联通后,新树的径端点为\(A\)的径端点与\(B\)的径端点的两点 不断加边,那 ...

  6. 主攻ASP.NET.4.5.1 MVC5.0之重生:根据产品类别显示菜单分类和分页

    路径访问的几种方式和分页效果 显示其它类别的效果和多数据分页效果 默认访问网站路径效果和多数据分页效果 URL路径访问可页面 http://localhost:5339/stationery http ...

  7. php数组函数-array_key_exists()

    array_key_exists()函数判断某个数组中是否存在指定的key,如果key存 在,则返回true,否则返回flase array_key_exists(key,array); key:必需 ...

  8. INSPIRED启示录 读书笔记 - 第4章 产品管理与产品设计

    理解用户体验设计 1.用户研究:专门研究.分析用户,评估产品或产品原型是否符合特定用户的使用习惯.其具体工作包括拟订恰当的测试项目,监督测试,评估测试结果,提出改进方案 2.交互设计:在理解目标用户的 ...

  9. org.apache.flume.ChannelException: Take list for MemoryTransaction, capacity 100 full, consider committing more frequently, increasing capacity, or increasing thread count

    flume在抽取MySQL数据到kafka时报错,如下 [SinkRunner-PollingRunner-DefaultSinkProcessor] ERROR org.apache.flume.s ...

  10. numpy里*与dot与multiply

    一.*  , dot()   multiply() 1, 对于array来说,(* 和 dot()运算不同, * 和 multiply()运算相同) *和multiply() 是每个元素对应相乘 do ...