BZOJ 3597 SCOI2014 方伯伯送椰子 网络流分析+SPFA
原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3597
Description
四川的方伯伯为了致富,决定引进海南的椰子树。方伯伯的椰子园十分现代化,椰子园中有一套独特的交通系统。
现在用点来表示交通节点,边来表示道路。这样,方伯伯的椰子园就可以看作一个有 n + 2 个交通节点,m条边的有向无环图。n +1 号点为入口,n +2 号点为出口。每条道路都有 6 个参数,ui,vi,ai,bi,ci,di,分别表示,该道路从 ui 号点通向 vi 号点,将它的容量压缩一次要 ai 的花费,容量扩大一次要 bi 的花费,该条道路当前的运输容量上限为 ci,并且每单位运输量通过该道路要 di 的费用。
在这个交通网络中,只有一条道路与起点相连。因为弄坏了这条道路就会导致整个交通网络瘫痪,聪明的方伯伯决定绝不对这条道路进行调整,也就是说,现在除了这条道路之外,对其余道路都可以进行调整。
有两种调整方式:
选择一条道路,将其进行一次压缩,这条道路的容量会下降 1 单位。
- 选择一条道路,将其进行一次扩容,这条道路的容量会上升 1 单位。
一条道路可以被多次调整。
由于很久以前,方伯伯就请过一个工程师,对这个交通网络进行过一次大的优化调整。所以现在所有的道路都被完全的利用起来了,即每条道路的负荷都是满的(每条道路的流量等于其容量)。
但方伯伯一想到自己的海南椰子会大丰收,就十分担心巨大的运输量下,会导致过多的花费。因此,方伯伯决定至少进行一次调整,调整之后,必须要保持每条道路满负荷,且总交通量不会减少。
设调整后的总费用是 Y,调整之前的总费用是 X。现在方伯伯想知道,最优调整比率是多少,即假设他进行了 k 次调整,(X - Y)/k最大能是多少?
注:总费用 = 交通网络的运输花费 + 调整的花费
Input
第一行包含二个整数N,M接下来M行代表M条边,表示这个交通网络每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di接下来一行包含一条边,表示连接起点的边
Output
一个浮点数,保留二位小数。表示答案,数据保证答案大于0
Sample Input
1 5 13 13 0 412
2 5 30 18 396 148
1 5 33 31 0 39
4 5 22 4 0 786
4 5 13 32 0 561
4 5 3 48 0 460
2 5 32 47 604 258
5 7 44 37 75 164
5 7 34 50 925 441
6 2 26 38 1000 22
Sample Output
HINT
1<=N<=500,0<=M<=3000,1<=Ui,Vi<=N+2,0<=Ai,Bi<=500,0<=Ci<=10000,0<=Di<=1000
题意概述:
给出一个N+2个点M条边的DAG图,这是一张网络,每条边有缩容1的代价a,扩容1的代价b,流量上限c,流量费用d。一开始网络中每条边都是满流的。现在可以对网络进行一些调整(不包括和起点相连的唯一的那条边),调整之后使得网络中的所有边依旧满流(即同时流量大小不变)。
假设进行了K次调整,调整之前的总流量费用为X,调整中花费的费用以及调整之后的流量费用为Y,问(X-Y)/K的最大值(答案保证大于0)。
分析:
哎呀呀先分析性质。。。。。
题目给的(X-Y)/K长得很难看。。发现每一次操作只会让某一条边新的流量的代价增加/减少单位代价,所以说这个式子实际上求的是合法调整方案每次操作的单位代价。
最终的总流量不能变,那么事实上我们不能增流或者减流,只能调整流量。在残量网络之中一个合法的改流对应了一个环(可以递归证明,因为这是个DAG图所以不存在正权环无效改流的情况)。对于一次增流操作,付出的代价为d+b;对于一次减流操作,得到的收益为d-a。当存在一个环中所有边的调整代价为负数,即得到一个负权环的时候,这种调整给我们带来了收益。
题目的问法显然是个最优比率问题,那么考虑二分答案。假设当前二分到的值为m,假设存在一种方案,所有被操作的边的收益和为sum,操作边的数量为cnt,那么有sum/cnt>=m,虽然这其中可能有很多个环,但是根据糖水原理一定至少包含一个环单独满足这个性质。于是对于这单独的一个环,式子变成:cnt*m-sum<=0,cnt表示的是环上边的数量。分到每条边的头上就是sum{m-w}<=0,其中w代表的是这条边的收益(原图的边正向连边,收益-(d+b),反向连边,收益为(d-a))。对于原图中没有流量的边,不连反向边。二分答案的时候看有没有负权环,有的话说明答案成立,可以往大猜,否则不成立,只能往小猜。
二分下界为0,上界为所有边d的和。
最坏时间复杂度:O((34)*N*M)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<cctype>
#define inf (1e9+5)
using namespace std;
const int maxn=;
const int maxm=;
const double eps=1e-; int N,M;
struct net_edge{ int u,v,a,b,c,d; }NE[maxm];
struct edge{ int to,next; double w; }E[maxm<<];
int first[maxn],np,inq[maxn],inc[maxn],sum; double dist[maxn]; void data_in()
{
scanf("%d%d",&N,&M);
for(int i=;i<=M;i++){
scanf("%d%d%d%d%d%d",&NE[i].u,&NE[i].v,&NE[i].a,&NE[i].b,&NE[i].c,&NE[i].d);
sum+=NE[i].d;
}
}
void add_edge(int u,int v,double w)
{
E[++np]=(edge){v,first[u],w};
first[u]=np;
}
bool SPFA()
{
for(int i=;i<=N+;i++) dist[i]=inf,inc[i]=inq[i]=;
queue<int>q;
q.push(N+);
dist[N+]=,inq[N+]=,inc[N+]=;
while(!q.empty()){
int i=q.front(); q.pop();
inq[i]=;
for(int p=first[i];p;p=E[p].next){
int j=E[p].to;
if(dist[i]+E[p].w<dist[j]){
dist[j]=dist[i]+E[p].w,
if(!inq[j]){
if(++inc[j]==N+) return ;
inq[j]=,q.push(j);
}
}
}
}
return ;
}
bool check(double m)
{
memset(first,,sizeof(first));
np=;
for(int i=;i<=M;i++){
add_edge(NE[i].u,NE[i].v,m+(NE[i].d+NE[i].b));
if(NE[i].c) add_edge(NE[i].v,NE[i].u,m-(NE[i].d-NE[i].a));
}
return SPFA();
}
void work()
{
double L=,R=sum,mid,ans=;
while(R-L>=eps){
mid=(L+R)/;
if(check(mid)) ans=mid,L=mid;
else R=mid;
}
printf("%.2f\n",ans);
}
int main()
{
data_in();
work();
return ;
}
BZOJ 3597 SCOI2014 方伯伯送椰子 网络流分析+SPFA的更多相关文章
- bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 144 Solved: 78[Submit][Status ...
- bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]
3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费 ...
- bzoj 3597 [Scoi2014] 方伯伯运椰子 - 费用流 - 二分答案
题目传送门 传送门 题目大意 给定一个费用流,每条边有一个初始流量$c_i$和单位流量费用$d_i$,增加一条边的1单位的流量需要花费$b_i$的代价而减少一条边的1单位的流量需要花费$a_i$的代价 ...
- bzoj 3597: [Scoi2014]方伯伯运椰子
Description Input 第一行包含二个整数N,M 接下来M行代表M条边,表示这个交通网络 每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di 接下来一行包含一条边,表示连接起点的边 Ou ...
- 3597: [Scoi2014]方伯伯运椰子[分数规划]
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MB Submit: 404 Solved: 249 [Submit][Sta ...
- 洛谷3288 SCOI2014方伯伯运椰子(分数规划+spfa)
纪念博客又一次爆炸了 首先,对于本题中,我们可以发现,保证存在正整数解,就表示一定费用会降低.又因为一旦加大的流量,费用一定会变大,所以总流量一定是不变的 那么我们这时候就需要考虑一个退流的过程 对于 ...
- bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 594 Solved: 360[Submit][Statu ...
- bzoj 3594: [Scoi2014]方伯伯的玉米田 dp树状数组优化
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 314 Solved: 132[Submit][Sta ...
- BZOJ 3595: [Scoi2014]方伯伯的Oj SBT+可持久化Treap
3595: [Scoi2014]方伯伯的Oj Time Limit: 6 Sec Memory Limit: 256 MBSubmit: 102 Solved: 54[Submit][Status ...
随机推荐
- LeetCode8.字符串转换整数(atoi) JavaScript
请你来实现一个 atoi 函数,使其能将字符串转换成整数. 首先,该函数会根据需要丢弃无用的开头空格字符,直到寻找到第一个非空格的字符为止. 当我们寻找到的第一个非空字符为正或者负号时,则将该符号与之 ...
- 前端 new和instanceof JavaScript
new和instanceof的内部机制 new 代码例子 var Func=function(){ }; var func=new Func (); new共经过4个阶段 1.创建一个空对象 var ...
- SQL Server笔记-语法
1.USE <DatabaseName> //选择数据库 例:USE [master] //master是系统默认数据库 2.字段或表名与保留字或关键字重名时需要加. 3.COMPATIB ...
- web 切换多语言版本
1.Google 翻译 <div id="google_translate_element"></div> <script type="te ...
- svg了解一下
工作需求,要用svg动态生成思维导图.我的天,这是我的短板. 但是没办法,需求在这,硬着头皮上吧. 本来想偷懒,看看网上有没有现成的可以copy的,逛了一圈发现没有. 这个过程种发现了D3.Three ...
- jsp中java代码、jsp代码、js代码执行的顺序
原理: jsp中的Java代码 -- 服务器端代码 js代码 -- 客户端代码 java是在服务器端运行的代码,jsp在服务器的servlet里运行,而JavaScript和html都是在浏览器端运行 ...
- css3响应式布局设计——回顾
响应式设计是在不同设备下分辨率不同显示的样式就不同. media 属性用于为不同的媒体类型规定不同的样式.根绝浏览器的宽度和高度重新渲染页面. 语法: @media mediatype and | n ...
- Sql Server 查看存储过程最后修改时间
Sql Server 查看存储过程最后修改时间 select * from sys.procedures order by modify_date desc
- 分布式日志系统ELK搭建
ELK:Elasticsearch Logstash Kibana Elasticsearch:是基于JSON的分布式搜索和分析引擎,专为实现水平扩展.高可用和管理便捷性而设计 Logstash:是 ...
- 子域收集-fierce
fierce 是使用多种技术来扫描目标主机IP地址和主机名的一个DNS服务器枚举工具.运用递归的方式来工作.它的工作原理是先通过查询本地DNS服务器来查找目标DNS服务器,然后使用目标DNS服务器来查 ...