【BZOJ3073】[Pa2011]Journeys

Description

Seter建造了一个很大的星球,他准备建造N个国家和无数双向道路。N个国家很快建造好了,用1..N编号,但是他发现道路实在太多了,他要一条条建简直是不可能的!于是他以如下方式建造道路:(a,b),(c,d)表示,对于任意两个国家x,y,如果a<=x<=b,c<=y<=d,那么在xy之间建造一条道路。Seter保证一条道路不会修建两次,也保证不会有一个国家与自己之间有道路。
Seter好不容易建好了所有道路,他现在在位于P号的首都。Seter想知道P号国家到任意一个国家最少需要经过几条道路。当然,Seter保证P号国家能到任意一个国家。
注意:可能有重边

Input

第一行三个数N,M,P。N<=500000,M<=100000。
后M行,每行4个数A,B,C,D。1<=A<=B<=N,1<=C<=D<=N。

Output

N行,第i行表示P号国家到第i个国家最少需要经过几条路。显然第P行应该是0。

Sample Input

5 3 4
1 2 4 5
5 5 4 4
1 1 3 3

Sample Output

1
1
2
0
1

题解:珍爱生命,远离vector!珍爱生命,远离cfree!

ZZ一上午就跟这道题耗上了,一开始想用线段树维护一堆vector,然后用并查集+BFS来搞,结果就死在了vector的删除操作上啊~,各种奇葩错误信息直接将cfree搞炸了,然后卸载+重启+重装了n次也不好使,于是默默回归gdb。。。

于是最后还是放弃,学了用线段树优化建图+Dijkstra,具体方法:

建立两棵线段树,A树从所有节点向父亲连边,B树从所有节点向儿子连边,从B树的所有叶子向A树的所有叶子连边,边权都是0。

对于每个操作,新建节点c,从A中对应的节点向c连边,从c向B中对应节点连边,边权都是${1\over2}$

然后跑Dijkstra就行了。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <utility>
#define mp(A,B) make_pair(A,B)
#define lson (x<<1)
#define rson (x<<1|1)
using namespace std;
const int maxn=500010;
typedef pair<int,int> pii;
int n,m,S,tot,cnt;
int vis[5000000],dis[5000000],pos[maxn];
int to[30000000],next[30000000],val[30000000],head[5000000];
priority_queue<pii> pq;
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
}
struct sag
{
void build(int l,int r,int x,int flag)
{
if(l==r)
{
if(!flag) pos[l]=x;
else add(x+4*n,x,0);
return ;
}
int mid=l+r>>1;
build(l,mid,lson,flag),build(mid+1,r,rson,flag);
if(flag) add(x+4*n,lson+4*n,0),add(x+4*n,rson+4*n,0);
else add(lson,x,0),add(rson,x,0);
}
void updata(int l,int r,int x,int a,int b,int c,int flag)
{
if(a<=l&&r<=b)
{
if(!flag) add(x,c,1);
else add(c,x+4*n,1);
return ;
}
int mid=l+r>>1;
if(a<=mid) updata(l,mid,lson,a,b,c,flag);
if(b>mid) updata(mid+1,r,rson,a,b,c,flag);
}
}s1,s2;
int main()
{
n=rd(),m=rd(),S=rd();
int i,a,b,c,d;
memset(head,-1,sizeof(head));
s1.build(1,n,1,0),s2.build(1,n,1,1);
tot=n<<3;
for(i=1;i<=m;i++)
{
a=rd(),b=rd(),c=rd(),d=rd();
s1.updata(1,n,1,a,b,++tot,0),s2.updata(1,n,1,c,d,tot,1);
s1.updata(1,n,1,c,d,++tot,0),s2.updata(1,n,1,a,b,tot,1);
}
memset(dis,0x3f,sizeof(dis));
pq.push(mp(0,pos[S])),dis[pos[S]]=0;
int u;
while(!pq.empty())
{
u=pq.top().second,pq.pop();
if(vis[u]) continue;
vis[u]=1;
for(i=head[u];i!=-1;i=next[i])
if(dis[to[i]]>dis[u]+val[i])
dis[to[i]]=dis[u]+val[i],pq.push(mp(-dis[to[i]],to[i]));
}
for(i=1;i<=n;i++) printf("%d\n",dis[pos[i]]>>1);
return 0;
}

【BZOJ3073】[Pa2011]Journeys 线段树+堆优化Dijkstra的更多相关文章

  1. bzoj3073: [Pa2011]Journeys 线段树优化建图

    bzoj3073: [Pa2011]Journeys 链接 BZOJ 思路 区间和区间连边.如何线段树优化建图. 和单点连区间类似的,我们新建一个点,区间->新点->区间. 又转化成了单点 ...

  2. BZOJ3073: [Pa2011]Journeys(线段树优化建图 Dijkstra)

    题意 \(n\)个点的无向图,构造\(m\)次边,求\(p\)到任意点的最短路. 每次给出\(a, b, c, d\) 对于任意\((x_{a \leqslant x \leqslant b}, y_ ...

  3. 【bzoj3073】[Pa2011]Journeys 线段树优化建图+堆优化Dijkstra

    题目描述 Seter建造了一个很大的星球,他准备建造N个国家和无数双向道路.N个国家很快建造好了,用1..N编号,但是他发现道路实在太多了,他要一条条建简直是不可能的!于是他以如下方式建造道路:(a, ...

  4. bzoj 3073: [Pa2011]Journeys -- 线段树优化最短路

    3073: [Pa2011]Journeys Time Limit: 20 Sec  Memory Limit: 512 MB Description     Seter建造了一个很大的星球,他准备建 ...

  5. bzoj 3073 [Pa2011]Journeys ——线段树优化连边

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3073 建两棵线段树,一棵孩子向父亲连边,是走出去的:一棵父亲向孩子连边,是走进来的. 注意第 ...

  6. 【bzoj4016】[FJOI2014]最短路径树问题 堆优化Dijkstra+DFS树+树的点分治

    题目描述 给一个包含n个点,m条边的无向连通图.从顶点1出发,往其余所有点分别走一次并返回. 往某一个点走时,选择总长度最短的路径走.若有多条长度最短的路径,则选择经过的顶点序列字典序最小的那条路径( ...

  7. BZOJ_3073_[Pa2011]Journeys_线段树优化建图+BFS

    BZOJ_3073_[Pa2011]Journeys_线段树优化建图+BFS Description Seter建造了一个很大的星球,他准备建造N个国家和无数双向道路.N个国家很快建造好了,用1..N ...

  8. BZOJ3073 Journeys - 线段树优化建边

    传送门 题意: Seter建造了一个很大的星球,他准备建造N个国家和无数双向道路.N个国家很快建造好了,用1..N编号,但是他发现道路实在太多了,他要一条条建简直是不可能的!于是他以如下方式建造道路: ...

  9. BZOJ 3040 最短路 (堆优化dijkstra)

    这题不是裸的最短路么?但是一看数据范围就傻了.点数10^6,边数10^7.这个spfa就别想了(本来spfa就是相当不靠谱的玩意),看来是要用堆优化dijkstra了.但是,平时写dijkstra时为 ...

随机推荐

  1. Scapy基础学习之中的一个

    关于Scapy Scapy的是一个强大的交互式数据包处理程序(使用python编写). 它可以伪造或者解码大量的网络协议数据包,可以发送.捕捉.匹配请求和回复包等等.它可以非常easy地处理一些典型操 ...

  2. 【翻译自mos文章】在Oracle单机数据库中定义database service

    来源于: Defining a Database Service with a Stand Alone Database (文档 ID 1260134.1) APPLIES TO: Oracle Da ...

  3. git 基于某个分支创建分支

    1.拷贝源代码 git clone git@git地址 cd 项目目录 2.根据已有分支创建新的分支 git checkout -b yourbranchname origin/oldbranchna ...

  4. HDU 5094 --Maze【BFS &amp;&amp; 状态压缩】

    Maze Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 100000/100000 K (Java/Others) Total Sub ...

  5. Win7与虚拟机Linux互通ping的网络设置

    转载请标明出处:http://www.linuxidc.com/Linux/2014-04/100450.htm 虽然从WinXP到Win7一直都可以使用VMWARE虚拟机安装Linux系统,记得每次 ...

  6. VS中 无法创建虚拟目录 本地IIS IIS Express 外部主机

    从前就有个疑问了,为什么我拉取别人写好的代码后就可以在IIS里面生成一个网站呢? 这里所谓的生成网站,是指包含了所有源代码文件的网站:相对地,发布网站,就是指包含被编译的源文件所得到的DLL文件的网站 ...

  7. 【ASP.NET MVC系列】浅谈数据注解和验证

    [ASP.NET MVC系列]浅谈数据注解和验证   [01]浅谈Google Chrome浏览器(理论篇) [02]浅谈Google Chrome浏览器(操作篇)(上) [03]浅谈Google C ...

  8. Lucene4.0 LogMergePolicy

    其特点是给定的段列表顺序归并,不像TieredMergePolicy那样按大小排序之后决定. norm = log(10),levelFloor=log(minMergeSize)/norm,对段列表 ...

  9. 摄像头驱动_摄像头驱动程序必需的11个ioctl及摄像头数据的获取过程

    摄像头驱动_摄像头驱动程序必需的11个ioctl及摄像头数据的获取过程 根据虚拟驱动vivi的使用过程彻底分析摄像头驱动// 1~2都是在v4l2_open里调用1. open2. ioctl(4, ...

  10. PILE读书笔记_进程环境

    进程是操作系统运行程序的一个实例, 也是操作系统分配资源的单位. 在Linux环境中, 每个进程都有独立的进程空间, 以便对不同的进程进行隔离, 使之不会互相影响. atexit函数 #include ...