题面

传送门

题解

对于每个圆,我们单独计算它被覆盖的周长是多少

只有相交的情况需要考虑,我们需要知道相交的那段圆弧的角度,发现其中一个交点和两个圆的圆心可以构成一个三角形且三边都已经知道了,那么我们可以根据余弦定理计算出这段圆弧的余弦进而用\(acos\)计算出角度

然而现在有个尴尬的问题是一段圆弧可能会被多次覆盖。那么我们考虑把相交的圆弧的左右端点用极角来表示,并把这个看成一条线段,那么最后只要求出线段覆盖就行了

顺便注意转化为极角的时候如果极角是负的要加上\(2\pi\),如果这时候\(l>r\),就拆成\([l,2\pi]+[2\pi,r]\)的形式

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
double readdb()
{
R double x=0,y=0.1,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(x=ch-'0';(ch=getc())>='0'&&ch<='9';x=x*10+ch-'0');
for(ch=='.'&&(ch=getc());ch>='0'&&ch<='9';x+=(ch-'0')*y,y*=0.1,ch=getc());
return x*f;
}
const int N=2005;const double Pi=acos(-1.0);
struct point{double r,x,y;}p[N];
struct node{
double l,r;
node(){}
node(R double ll,R double rr):l(ll),r(rr){}
inline bool operator <(const node &b)const{return l<b.l;}
}st[N];
int n,top;double res;
inline double dis(R int i,R int j){return sqrt((p[i].x-p[j].x)*(p[i].x-p[j].x)+(p[i].y-p[j].y)*(p[i].y-p[j].y));}
inline int in(R int i,R int j){return p[j].r>=p[i].r+dis(i,j);}
void calc(int pos){
fp(i,pos+1,n)if(in(pos,i))return;
top=0;
fp(i,pos+1,n){
R double d=dis(pos,i);if(in(i,pos)||p[i].r+p[pos].r<=d)continue;
R double t=acos((d*d+p[pos].r*p[pos].r-p[i].r*p[i].r)/(2*p[pos].r*d));
R double b=atan2(p[i].y-p[pos].y,p[i].x-p[pos].x);
st[++top]=node(b-t,b+t);
st[top].l<0?st[top].l+=2*Pi:0;
st[top].r<0?st[top].r+=2*Pi:0;
st[top].l>st[top].r?(st[top+1]=node(0,st[top].r),st[top++].r=2*Pi):0;
}
sort(st+1,st+1+top);
R double now=0,tmp=0;
fp(i,1,top)now<st[i].l?(tmp+=st[i].l-now,now=st[i].r):cmax(now,st[i].r);
res+=p[pos].r*(tmp+2*Pi-now);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read();
fp(i,1,n)p[i].r=readdb(),p[i].x=readdb(),p[i].y=readdb();
fp(i,1,n)calc(i);
printf("%.3lf\n",res);
return 0;
}

洛谷P2510 [HAOI2008]下落的圆盘(计算几何)的更多相关文章

  1. bzoj1043[HAOI2008]下落的圆盘 计算几何

    1043: [HAOI2008]下落的圆盘 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1598  Solved: 676[Submit][Stat ...

  2. luogu P2510 [HAOI2008]下落的圆盘

    LINK:下落的圆盘 计算几何.n个圆在平面上编号大的圆将编号小的圆覆盖求最后所有没有被覆盖的圆的边缘的总长度. 在做这道题之前有几个前置知识. 极坐标系:在平面内 由极点 极轴 和 极径组成的坐标系 ...

  3. 【bzoj1043】[HAOI2008]下落的圆盘 计算几何

    题目描述 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. 输入 第一行为1个整数n,N<=1000接下来n行每行3个实 ...

  4. BZOJ 1043 HAOI2008 下落的圆盘 计算几何

    题目大意:n个圆盘依次下落.求终于能看到的轮廓线面积 円盘反对! 让我们一起团结起来! 赶走円盘! 咳咳.非常神的一道题 今天去看了题解和白书才搞出来-- 首先我们倒着做 对于每一个圆盘处理出在它之后 ...

  5. BZOJ 1043 [HAOI2008]下落的圆盘 ——计算几何

    倒着考虑,加入一个圆,判断和前面有没有完全覆盖的情况. 如果没有,和圆盘一一取交集,然后计算它们的并集,然后计算即可. #include <map> #include <cmath& ...

  6. JZYZOJ1502 [haoi2008]下落的圆盘 计算几何 贪心

    http://172.20.6.3/Problem_Show.asp?id=1502这种题用了快一天才写出来也是真的辣鸡.主要思路就是计算一下被挡住的弧度然后对弧度进行贪心.最开始比较困扰的是求弧度值 ...

  7. P2510 [HAOI2008]下落的圆盘

    传送门 首先考虑两个圆覆盖的情况,我们可以求出圆心与交点连线 $A$ 的极角 具体就是求出两圆心连线 $B$ 极角加上余弦定理加反余弦求出 $A,B$ 之间夹角 ,然后覆盖了多少就可以得出 但是多个圆 ...

  8. 【BZOJ1043】[HAOI2008]下落的圆盘 几何

    [BZOJ1043][HAOI2008]下落的圆盘 Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求.  ...

  9. 洛谷 P4290 [HAOI2008]玩具取名

    传送门 思路 博客半年没更新了,来更新个博文吧 在\(dsr\)聚聚博客的帮助下,我用半个上午和一个中午的时间苟延残喘地完成了这道题 先是读题目读大半天,最后连个样例都看不懂 之后又是想思路,实在想不 ...

随机推荐

  1. js中的class

    js中的class 类写法 class SuperClass { constructor(option) { this.a = option; } fn() { console.log(this.b) ...

  2. python---Redis 学习笔记

    缓存 前言: 大家都听过缓存,缓存是干啥的呢?我们可以和json和pickle来说,两个程序之间实现信息交互,可以通过在A程序中把数据改成json ,然后传给B程序,通过文件这个介质.文件这个效率很低 ...

  3. Iterator(迭代器)的一般用法 (转)

    迭代器(Iterator) 迭代器是一种设计模式,它是一个对象,它可以遍历并选择序列中的对象,而开发人员不需要了解该序列的底层结构.迭代器通常被称为“轻量级”对象,因为创建它的代价小. Java中的I ...

  4. Hadoop Serialization(third edition)hadoop序列化详解(最新版) (1)

    初学java的人肯定对java序列化记忆犹新.最开始很多人并不会一下子理解序列化的意义所在.这样子是因为很多人还是对java最底层的特性不是特别理解,当你经验丰富,对java理解更加深刻之后,你就会发 ...

  5. 4-3 线程安全性-原子性-synchronized

    原子性它提供了互斥访问,同一时刻只能有一个线程来对它进行操作.能保证同一时刻只有一个线程来对其进行操作的,除了Atomic包之外,还有锁.JDK提供锁主要分两种,synchronized是一个Java ...

  6. NFA/DFA算法

    1.问题概述 随着计算机语言的结构越来越复杂,为了开发优秀的编译器,人们已经渐渐感到将词 法分析独立出来做研究的重要性.不过词法分析器的作用却不限于此.回想一下我们的老师刚刚开始向我们讲述程序设计的时 ...

  7. libevent源码深度剖析六

    libevent源码深度剖析六 ——初见事件处理框架 张亮 前面已经对libevent的事件处理框架和event结构体做了描述,现在是时候剖析libevent对事件的详细处理流程了,本节将分析 lib ...

  8. 2-chrome无法添加扩展程序

    1.更多工具->拓展程序->打开开发者模式->重启浏览器 2.将拓展程序拖入,确认安装

  9. 如何在CentOS里切换操作系统所用的语言,中英文切换

    操作系统CentOS 7.5,安装的时候选择的事中文,后来想改成英文 1.点左上角的“应用程序”---->再点“系统工具”----->“设置” 2.点“区域语言”,再点右侧的“汉语(中国) ...

  10. [GO]给导入包起别名

    package main import io "fmt" //引用fmt这个包时,名字重命名为io import _ "os" //引用os这个包,但是不调用, ...