ial Judge
Type:

None

 

None
 
Graph Theory
 
    2-SAT
 
    Articulation/Bridge/Biconnected Component
 
    Cycles/Topological Sorting/Strongly Connected Component
 
    Shortest Path
 
        Bellman Ford
 
        Dijkstra/Floyd Warshall
 
    Euler Trail/Circuit
 
    Heavy-Light Decomposition
 
    Minimum Spanning Tree
 
    Stable Marriage Problem
 
    Trees
 
    Directed Minimum Spanning Tree
 
    Flow/Matching
 
        Graph Matching
 
            Bipartite Matching
 
            Hopcroft–Karp Bipartite Matching
 
            Weighted Bipartite Matching/Hungarian Algorithm
 
        Flow
 
            Max Flow/Min Cut
 
            Min Cost Max Flow
 
DFS-like
 
    Backtracking with Pruning/Branch and Bound
 
    Basic Recursion
 
    IDA* Search
 
    Parsing/Grammar
 
    Breadth First Search/Depth First Search
 
    Advanced Search Techniques
 
        Binary Search/Bisection
 
        Ternary Search
 
Geometry
 
    Basic Geometry
 
    Computational Geometry
 
    Convex Hull
 
    Pick's Theorem
 
Game Theory
 
    Green Hackenbush/Colon Principle/Fusion Principle
 
    Nim
 
    Sprague-Grundy Number
 
Matrix
 
    Gaussian Elimination
 
    Matrix Exponentiation
 
Data Structures
 
    Basic Data Structures
 
    Binary Indexed Tree
 
    Binary Search Tree
 
    Hashing
 
    Orthogonal Range Search
 
    Range Minimum Query/Lowest Common Ancestor
 
    Segment Tree/Interval Tree
 
    Trie Tree
 
    Sorting
 
    Disjoint Set
 
String
 
    Aho Corasick
 
    Knuth-Morris-Pratt
 
    Suffix Array/Suffix Tree
 
Math
 
    Basic Math
 
    Big Integer Arithmetic
 
    Number Theory
 
        Chinese Remainder Theorem
 
        Extended Euclid
 
        Inclusion/Exclusion
 
        Modular Arithmetic
 
    Combinatorics
 
        Group Theory/Burnside's lemma
 
        Counting
 
    Probability/Expected Value
 
Others
 
    Tricky
 
    Hardest
 
    Unusual
 
    Brute Force
 
    Implementation
 
    Constructive Algorithms
 
    Two Pointer
 
    Bitmask
 
    Beginner
 
    Discrete Logarithm/Shank's Baby-step Giant-step Algorithm
 
    Greedy
 
    Divide and Conquer
 
Dynamic Programming
                  Tag it!

Johnny and his friends have decided to spend Halloween night doing the usual candy collection from the households of their village. As the village is too big for a single group to collect the candy from all houses sequentially, Johnny and his friends have decided to split up so that each of them goes to a different house, collects the candy (or wreaks havoc if the residents don't give out candy), and returns to a meeting point arranged in advance.

There are n houses in the village, the positions of which can be identified with their Cartesian coordinates on the Euclidean plane. Johnny's gang is also made up of n people (including Johnny himself). They have decided to distribute the candy after everybody comes back with their booty. The houses might be far away, but Johnny's interest is in eating the candy as soon as possible.

Keeping in mind that, because of their response to the hospitality of some villagers, some children might be wanted by the local authorities, they have agreed to fix the meeting point by the river running through the village, which is the line y = 0. Note that there may be houses on both sides of the river, and some of the houses may be houseboats (y = 0). The walking speed of every child is 1 meter per second, and they can move along any direction on the plane.

At exactly midnight, each child will knock on the door of the house he has chosen, collect the candy instantaneously, and walk back along the shortest route to the meeting point. Tell Johnny at what time he will be able to start eating the candy.

 

Input

Each test case starts with a line indicating the number n of houses ( 1<=n<=50 000). The next n lines describe the positions of the houses; each of these lines contains two floating point numbers x and y ( -200 000 <= xy <= 200 000), the coordinates of a house in meters. All houses are at different positions.

A blank line follows each case. A line with n = 0 indicates the end of the input; do not write any output for this case.

 

Output

For each test case, print two numbers in a line separated by a space: the coordinate x of the meeting point on the line y = 0 that minimizes the time the last child arrives, and this time itself (measured in seconds after midnight). Your answer should be accurate to within an absolute or relative error of 10-5.

 

Sample Input

2
1.5 1.5
3 0 1
0 0 4
1 4
4 4
-3 3
2 4 5
4 7
-4 0
7 -6
-2 4
8 -5 0

Sample Output

1.500000000 1.500000000
0.000000000 0.000000000
1.000000000 5.000000000
3.136363636 7.136363636 题目大意:有n个人要回到x上的某个聚集点,问所有人都回到该点的最短时间。
解题思路:利用三分,求出x点坐标,最后求出最远的点到该点的距离。
#include<bits/stdc++.h>
using namespace std;
struct Cor{
double x,y;
}cor[55000];
#define mid (L+R)/2.0
#define mid_L (mid+L)/2.0
const double eps=1e-10;
const double INF=1e9;
int n;
double dis(Cor a,Cor b){
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
double calcu(double tx){
double ret=-INF;
Cor tmp_;
tmp_.x=tx,tmp_.y=0;
for(int i=0;i<n;i++){
if(ret<dis(cor[i],tmp_)){
ret=dis(cor[i],tmp_);
}
}
return sqrt(ret);
}
double three_div(double L,double R){
while(R-L>eps){
if(calcu(mid)>calcu(mid_L)){
R=mid;
}else{
L=mid_L;
}
}
return mid;
}
int main(){
while(scanf("%d",&n)!=EOF&&n){
for(int i=0;i<n;i++){
scanf("%lf%lf",&cor[i].x,&cor[i].y);
}
double ans_x,ans_d;
ans_x= three_div(-200000.0,200000.0);
ans_d=calcu(ans_x);
printf("%.9lf %.9lf\n",ans_x,ans_d);
}
return 0;
}

  

BNU 4260 ——Trick or Treat——————【三分求抛物线顶点】的更多相关文章

  1. Gym 2009-2010 ACM ICPC Southwestern European Regional Programming Contest (SWERC 2009) A. Trick or Treat (三分)

    题意:在二维坐标轴上给你一堆点,在x轴上找一个点,使得该点到其他点的最大距离最小. 题解:随便找几个点画个图,不难发现,答案具有凹凸性,有极小值,所以我们直接三分来找即可. 代码: int n; lo ...

  2. 1589: [Usaco2008 Dec]Trick or Treat on the Farm 采集糖果

    1589: [Usaco2008 Dec]Trick or Treat on the Farm 采集糖果 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 4 ...

  3. HLJU 1221: 高考签到题 (三分求极值)

    1221: 高考签到题 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 9  Solved: 4 [Submit][id=1221">St ...

  4. hihocoder 1142 三分求极值【三分算法 模板应用】

    #1142 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一 ...

  5. 「USACO08DEC」「LuoguP2921」在农场万圣节Trick or Treat on the Farm(tarjan

    题意翻译 题目描述 每年,在威斯康星州,奶牛们都会穿上衣服,收集农夫约翰在N(1<=N<=100,000)个牛棚隔间中留下的糖果,以此来庆祝美国秋天的万圣节. 由于牛棚不太大,FJ通过指定 ...

  6. C++ 洛谷 P2921 [USACO08DEC]在农场万圣节Trick or Treat on the Farm 题解

    P2921 [USACO08DEC]在农场万圣节Trick or Treat on the Farm 分析: 这棵树上有且仅有一个环 两种情况: 1.讨论一个点在环上,如果在则答案与它指向点相同, 2 ...

  7. Hihocoder #1142 : 三分·三分求极值

    1142 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个 ...

  8. hihocoder 1142 三分·三分求极值(三分)

    题目1 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点 ...

  9. BZOJ1589: [Usaco2008 Dec]Trick or Treat on the Farm 采集糖果

    1589: [Usaco2008 Dec]Trick or Treat on the Farm 采集糖果 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 4 ...

随机推荐

  1. 小规模kvm宿主机管理-webvirtmgr安装

    1.前言WebVirtMgr是近两年来发展较快,比较活跃,非常清新的一个KVM管理平台,提供对宿主机和虚机的统一管理,它有别于kvm自带的图形管理工具(virtual machine manager) ...

  2. 洛谷P3711 仓鼠的数学题(伯努利数+多项式求逆)

    题面 传送门 题解 如果您不知道伯努利数是什么可以去看看这篇文章 首先我们把自然数幂和化成伯努利数的形式 \[\sum_{i=1}^{n-1}i^k={1\over k+1}\sum_{i=0}^k{ ...

  3. 开发效率神器 uTools - 偏前端和 UI

    本文首发于:Bougie's Blog - 效率神器 uTools 前言 今天组内公众号推荐了 Mac 上的效率神器 Alfred. 详情链接:效率神器 Alfred workflow 插件推荐 早上 ...

  4. Ubuntu系统使用apache部署多个django项目(python4.3)

    /etc/apache2/sites-available/pyweb.conf <VirtualHost *:> ServerName 192.168.1.46 DocumentRoot ...

  5. 【Jquery】jquery刷新页面(局部及全页面刷新)

    下面介绍全页面刷新方法:有时候可能会用到window.location.reload()刷新当前页面.parent.location.reload()刷新父亲对象(用于框架)opener.locati ...

  6. 前端CSS的基本素养

    前端开发的三驾马车——html.css.js,先谈谈CSS CSS 前期:解决布局.特效.兼容问题 中级:网站风格的制定.色调.模块.布局方式.交互方式.逻辑设计等 高级:模块命名.类的命名.文件的组 ...

  7. hibernate自动生成时报错问题

    创建好了实体类和.hbm.xml文件,运行项目报上错: 实体类和xml文件中的字段要一致.(顺序和字段)

  8. C++_异常6-其他异常特性

    虽然throw-catch机制类似于函数参数和函数返回机制,但是还是有些不同之处. 其中之一是函数fun()中的返回语句将控制权返回到调用fun()的函数A中, 但throw语句将控制权向上返回到第一 ...

  9. Loj 6432. 「PKUSC2018」真实排名 (组合数)

    题面 Loj 题解 枚举每一个点 分两种情况 翻倍or不翻倍 \(1.\)如果这个点\(i\)翻倍, 要保持排名不变,哪些必须翻倍,哪些可以翻倍? 必须翻倍: \(a[i] \leq a[x] < ...

  10. apache 2.4 访问权限配置

    在apache 2.4里,访问权限配置与2.2不同,如果设置不对,则会报403错误,日志中会报 AH01630: client denied by server configuration.   [S ...