题目背景

Roy和October两人在玩一个取石子的游戏。

题目描述

游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质数,k为自然数,且 p^kpk 小于等于当前剩余石子数),谁取走最后一个石子,谁就赢了。

现在October先取,问她有没有必胜策略。

若她有必胜策略,输出一行"October wins!";否则输出一行"Roy wins!"。

输入输出格式

输入格式:

第一行一个正整数T,表示测试点组数。

第2行~第(T+1)行,一行一个正整数n,表示石子个数。


输出格式:

T行,每行分别为"October wins!"或"Roy wins!"。

输入输出样例

输入样例#1:

3
4
9
14
输出样例#1:

October wins!
October wins!
October wins!

说明

对于30%的数据,1<=n<=30;

对于60%的数据,1<=n<=1,000,000;

对于100%的数据,1<=n<=50,000,000,1<=T<=100,000。

(改编题)

Solution:

  本题比较水。

  首先,不难发现$1,2,3,4,5$都是先手赢,到了$6$时就后手赢了,而对于大于$6$小于$12$的数,都能取$[1,5]$中的某个数,使其变为$6$,而到了$12$又是后手赢…

  直接告诉我们,$6$的倍数是先手必输状态,其余为先手必胜状态。

  首先,$6$的倍数一定不是某一质数的幂(这是显然的,因为$6=2\times 3$,所以$6$的倍数至少含两个质因子),所以$6$的倍数一定不能被一次取完。

  然后无论$6$的倍数怎么取,都至少取走一个非$6$的倍数的数,那么剩下的数必定为非$6$的倍数的数,我们只要从$[1,5]$中取某个值就能使得其又变为$6$的倍数。

  最后一定能够回到值为$6$且后手取的情况,此时后手无论取何值,都是输。

  所以只需判断一下是否是$6$的倍数就好了。

代码:

#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)>(b)?(b):(a))
using namespace std;
int T,n; il int gi(){
int a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=(a<<)+(a<<)+x-,x=getchar();
return f?-a:a;
} int main(){
T=gi();
while(T--){
n=gi();
if(n%==)puts("Roy wins!");
else puts("October wins!");
}
return ;
}

P4018 Roy&October之取石子的更多相关文章

  1. 洛谷 P4018 Roy&October之取石子

    洛谷 P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质 ...

  2. 洛谷——P4018 Roy&October之取石子

    P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取p^kpk个(p为质数,k为自 ...

  3. 洛谷P4018 Roy&October之取石子

    题目背景 \(Roy\)和\(October\)两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有\(n\)个石子,两人每次都只能取\(p^k\)个(\(p\)为质数,\(k\)为自然数,且 ...

  4. 洛谷P4018 Roy&October之取石子 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4018 首先碰到这道题目还是没有思路,于是寻思还是枚举找一找规律. 然后写了一下代码: #include <bits/s ...

  5. luogu P4018 Roy&October之取石子(博弈论)

    题意 题解 如果n是6的倍数,先手必败,否则先手必胜. 因为6*x一定不是pk 所以取得话会变成6*y+a的形式a=1,2,3,4,5: 然后a一定为质数.我们把a取完就又成为了6*x的形式. 又因为 ...

  6. 洛谷P4860 Roy&October之取石子II 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4860 和<P4018 Roy&October之取石子>一样的推导思路,去找循环节. 可以发现:只要不能被 ...

  7. 洛谷 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取pk 个(p为质数,k为自然数,且pk小于等于当前剩余石子数),谁取走最后一个石子 ...

  8. [luogu4018][Roy&October之取石子]

    题目链接 思路 这个题思路挺巧妙的. 情况一: 首先如果这堆石子的数量是1~5,那么肯定是先手赢.因为先手可以直接拿走这些石子.如果石子数量恰好是6,那么肯定是后手赢.因为先手无论怎样拿也无法直接拿走 ...

  9. [luogu4860][Roy&October之取石子II]

    题目链接 思路 这个题和上个题类似,仔细推一下就知道这个题是判断是否是4的倍数 代码 #include<cstdio> #include<iostream> #define f ...

随机推荐

  1. 配置Github秘钥

    Git安装完成后,需要手动配置ssh密钥 配置github的ssh密钥: (1)打开Git Bash查看电脑上是否已经存在SSH密钥: 输入 cd ~/.ssh 若如上图显示无法找到该文件则要创建新的 ...

  2. Hello,移动WEB—px,dp,dpr像素基础

    问题点1:iphone5分辨率:640 * 1136 dp,为什么chrome浏览器F12中显示的320 *568??         iPhone5 分辨率640 * 1136指的是物理像素,而实际 ...

  3. 主流浏览器内核,以及CSS3前缀识别码

    现在国内常见的浏览器有:IE.Firefox.QQ浏览器.Safari.Opera.Google Chrome.百度浏览器.搜狗浏览器.猎豹浏览器.360浏览器.UC浏览器.遨游浏览器.世界之窗浏览器 ...

  4. 方别《QQ群霸屏技术》,又见《QQ群建群细则》

    规则,时刻变动;QQ群系列,咱们再来一轮. QQ群霸屏技术,你说建群貌似很菜,大家仿佛都知道,其实只知其一不知其二. QQ群类别 群分类,常规的就以下几种. 普通群. 建群随意,偏个性化,一言不合就拉 ...

  5. 误删 EhCache 中的数据?

    最近遇到一个问题:在使用ehcache时,通过CacheManager.getCache(chachename).get(key),获取相应的缓存内对象(当时这个对象是个list), 有个同事写个方法 ...

  6. 《python编程从入门到实践》第六章笔记

    1.字典 字典:一系列键-值对,每一个键都与每一个值相关联.与键相关联的值可以是数字.字符串.列表和字典. 最简单的字典只有一个键值对. eg: alien = {'color':'green','p ...

  7. python3 练习题100例 (二十五)打印一个n层金字塔

    题目内容: 打印一个n层(1<n<20)金字塔,金字塔由“+”构成,塔尖是1个“+”,下一层是3个“+”,居中排列,以此类推. 注意:每一行的+号之后均无空格,最后一行没有空格. 输入格式 ...

  8. Horner规则求多项式

    /* Horner */ /*多项式:A(x)=a[n]X^n+a[n-1]x^n-1+...+a[1]X^1+a[0]X^0*/ #include <stdio.h> long int ...

  9. (数据科学学习手札05)Python与R数据读入存出方式的总结与比较

    在数据分析的过程中,外部数据的导入和数据的导出是非常关键的部分,而Python和R在这方面大同小异,且针对不同的包或模块,对应着不同的函数来完成这部分功能: Python 1.TXT文件 导入: 以某 ...

  10. 完整的vue+vuex+api-router+database请求流程