题目背景

Roy和October两人在玩一个取石子的游戏。

题目描述

游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质数,k为自然数,且 p^kpk 小于等于当前剩余石子数),谁取走最后一个石子,谁就赢了。

现在October先取,问她有没有必胜策略。

若她有必胜策略,输出一行"October wins!";否则输出一行"Roy wins!"。

输入输出格式

输入格式:

第一行一个正整数T,表示测试点组数。

第2行~第(T+1)行,一行一个正整数n,表示石子个数。


输出格式:

T行,每行分别为"October wins!"或"Roy wins!"。

输入输出样例

输入样例#1:

3
4
9
14
输出样例#1:

October wins!
October wins!
October wins!

说明

对于30%的数据,1<=n<=30;

对于60%的数据,1<=n<=1,000,000;

对于100%的数据,1<=n<=50,000,000,1<=T<=100,000。

(改编题)

Solution:

  本题比较水。

  首先,不难发现$1,2,3,4,5$都是先手赢,到了$6$时就后手赢了,而对于大于$6$小于$12$的数,都能取$[1,5]$中的某个数,使其变为$6$,而到了$12$又是后手赢…

  直接告诉我们,$6$的倍数是先手必输状态,其余为先手必胜状态。

  首先,$6$的倍数一定不是某一质数的幂(这是显然的,因为$6=2\times 3$,所以$6$的倍数至少含两个质因子),所以$6$的倍数一定不能被一次取完。

  然后无论$6$的倍数怎么取,都至少取走一个非$6$的倍数的数,那么剩下的数必定为非$6$的倍数的数,我们只要从$[1,5]$中取某个值就能使得其又变为$6$的倍数。

  最后一定能够回到值为$6$且后手取的情况,此时后手无论取何值,都是输。

  所以只需判断一下是否是$6$的倍数就好了。

代码:

#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)>(b)?(b):(a))
using namespace std;
int T,n; il int gi(){
int a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=(a<<)+(a<<)+x-,x=getchar();
return f?-a:a;
} int main(){
T=gi();
while(T--){
n=gi();
if(n%==)puts("Roy wins!");
else puts("October wins!");
}
return ;
}

P4018 Roy&October之取石子的更多相关文章

  1. 洛谷 P4018 Roy&October之取石子

    洛谷 P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质 ...

  2. 洛谷——P4018 Roy&October之取石子

    P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取p^kpk个(p为质数,k为自 ...

  3. 洛谷P4018 Roy&October之取石子

    题目背景 \(Roy\)和\(October\)两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有\(n\)个石子,两人每次都只能取\(p^k\)个(\(p\)为质数,\(k\)为自然数,且 ...

  4. 洛谷P4018 Roy&October之取石子 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4018 首先碰到这道题目还是没有思路,于是寻思还是枚举找一找规律. 然后写了一下代码: #include <bits/s ...

  5. luogu P4018 Roy&October之取石子(博弈论)

    题意 题解 如果n是6的倍数,先手必败,否则先手必胜. 因为6*x一定不是pk 所以取得话会变成6*y+a的形式a=1,2,3,4,5: 然后a一定为质数.我们把a取完就又成为了6*x的形式. 又因为 ...

  6. 洛谷P4860 Roy&October之取石子II 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4860 和<P4018 Roy&October之取石子>一样的推导思路,去找循环节. 可以发现:只要不能被 ...

  7. 洛谷 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取pk 个(p为质数,k为自然数,且pk小于等于当前剩余石子数),谁取走最后一个石子 ...

  8. [luogu4018][Roy&October之取石子]

    题目链接 思路 这个题思路挺巧妙的. 情况一: 首先如果这堆石子的数量是1~5,那么肯定是先手赢.因为先手可以直接拿走这些石子.如果石子数量恰好是6,那么肯定是后手赢.因为先手无论怎样拿也无法直接拿走 ...

  9. [luogu4860][Roy&October之取石子II]

    题目链接 思路 这个题和上个题类似,仔细推一下就知道这个题是判断是否是4的倍数 代码 #include<cstdio> #include<iostream> #define f ...

随机推荐

  1. 什么是token及怎样生成token

    什么是token Token是服务端生成的一串字符串,以作客户端进行请求的一个令牌,当第一次登录后,服务器生成一个Token便将此Token返回给客户端,以后客户端只需带上这个Token前来请求数据即 ...

  2. pyecharts的简单使用

    由于需要在项目中展示数据,查了查资料发现,pyecharts模块在网页数据展示方面有很大优势,所以就学了点pyechas 参考博客:Python:数据可视化pyecharts的使用 - JYRoy - ...

  3. Centos安装docker#避免很多坑

    采用yum方式安装 安装: step 1: 安装必要的一些系统工具 yum install -y yum-utils device-mapper-persistent-data lvm2 Step 2 ...

  4. 安装java 和 eclipse

    昨天安装eclipse出现个问题, 安装完了创建第一个项目目录的时候弹窗报错an ......什么什么, 百度一堆没有用,后来发现是jdk12不支持,换了jdk8就可以了, 然后eclipse安装py ...

  5. dijkstra算法学习

    dijkstra算法学习 一.最短路径 单源最短路径:计算源点到其他各顶点的最短路径的长度 全局最短路径:图中任意两点的最短路径 Dijkstra.Bellman-Ford.SPFA求单源最短路径 F ...

  6. 前端面试题目汇总摘录(JS 基础篇 —— 2018.11.02更新)

    温故而知新,保持空杯心态 JS 基础 JavaScript 的 typeof 返回那些数据类型 object number function boolean undefined string type ...

  7. Fiddler 发送post 请求失败

    今天服务端同事,让我发一个post 请求.然后呢,一直有问题.告诉我签名失败. 后来换了其他的在线模拟post,都是可以的. 后来找到原因了, post 请求,必须要有Content-Type 和 C ...

  8. 玩转Vim-札记(二)

    玩转Vim-札记(二) 距上篇博文已有一周有余,上次主要介绍了编辑器之神Vim的起源.安装并介绍了两种模式以及一些简单的操作.本次将继续对Vim的使用进行介绍. 登堂入室 首先接着说移动吧: 0 → ...

  9. Anytime项目开发记录0

    Anytime,中文名:我很忙. 开发者:孤独的猫咪神. 这个项目会持续更新,直到我决定不再维护这个APP. 2014年3月10日:近日有事,暂时断更.希望可以会尽快完事. 2014年3月27日:很抱 ...

  10. asp.net webapi 使用小结

    一星期前公司用webapi处理一些事情,自己总结一下用法. 1.创建一个空的webapi会默认有一下几个方法. public class ValueController : ApiController ...