ACM Computer Factory

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 9963   Accepted: 3738   Special Judge

题目链接:http://poj.org/problem?id=3436

Description:

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j — input specification for part j, Di,k — output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ N ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1
3 4
15 0 0 0 0 1 0
10 0 0 0 0 1 1
30 0 1 2 1 1 1
3 0 2 1 1 1 1
Sample input 2
3 5
5 0 0 0 0 1 0
100 0 1 0 1 0 1
3 0 1 0 1 1 0
1 1 0 1 1 1 0
300 1 1 2 1 1 1
Sample input 3
2 2
100 0 0 1 0
200 0 1 1 1

Sample Output

Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.
 
题意:
这个题意难度有点大呀TnT。
简单说就是给出n个机器,每个机器都有一个pi代表生产效率,然后后面有2*p个数,前p个代表输入规范,后p个代表输出规范。这里输入输出规范的意思就是这台机器可以把输入规范转化为输出规范。
输入规范里面0就是这里没有零件,1就是这里必须有零件,2就是这里可有可不有;输出规范里面就只有0,1,意义同上。
现在问最多可以生产出多少台电脑(假设机器的配合不消耗时间= =),只有输出规范全为1的机器可以生产电脑。
 

题解:

这题用最大流来做。首先建立一个超级源点和超级汇点,超级源点连上输入规范全为0,或有0也有2的机器,因为这些机器可以“无中生有”,边权为无穷大。

然后所有输出规范为1的机器就连向超级汇点,毕竟此时可以生成电脑,边权也为无穷大。

然后建立可以相互可达的机器之间的边,这里由于每个点有个生产效率的权值,所以我们考虑把点拆开为一条权值为其生产效率的有向边,拆成的两个点分别代表入读点和出度点。这样可以限定一条生产线上的生产效率。

然后直接跑最大流就好了~

最后统计结果的时候就随便统计一下就好了...毕竟special judge。如果一个出度点到一个入读点的边上面有流量,就代表了两个点之间有合作关系,就输出这两个点。

代码如下:

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
#define INF 99999999
using namespace std; const int N = ;
int P,n,tot;
int p[N],m[N][N],head[N],cur[N],d[N]; struct Edge{
int u,v,c,flow,next;
}e[N<<];
void adde(int u,int v,int w,int f){
e[tot].v=v;e[tot].u=u;e[tot].c=w;e[tot].flow=f;
e[tot].next=head[u];head[u]=tot++;
}
bool bfs(int s,int t){
for(int i=;i<=*n+;i++) d[i]=;d[s]=;
queue <int > q;q.push(s);
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(!d[v] && e[i].c>e[i].flow){
d[v]=d[u]+;
q.push(v);
}
}
}
return d[t]!=;
}
int dfs(int s,int a){
if(s==*n+ || a==) return a;
int flow = ;
for(int &i=cur[s];i!=-;i=e[i].next){
int v=e[i].v,f;
if(d[v]!=d[s]+) continue ;
f=dfs(v,min(a,e[i].c-e[i].flow));
if(f){
e[i].flow+=f;
e[i^].flow-=f;
a-=f;
flow+=f;
if(a==) break;
}
}
if(!flow) d[s]=-;
return flow;
}
int main(){
scanf("%d%d",&P,&n);
memset(head,-,sizeof(head));
for(int i=;i<=n;i++){
scanf("%d",&p[i]);
for(int j=;j<=*P;j++) scanf("%d",&m[i][j]);
} for(int i=;i<=n;i++){
adde(i,i+n,p[i],);
adde(i+n,i,,);
int flag1=,flag2=;
for(int j=;j<=P;j++){
if(m[i][j]==) flag1=;
if(m[i][j+P]!=) flag2=;
}
if(flag1) adde(,i,INF,),adde(i,,,);
if(flag2) adde(i+n,*n+,INF,),adde(*n+,i+n,,);
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(i==j) continue ;
bool ok = true ;
for(int k=P+;k<=P*;k++){
int now = k-P;
if(m[j][now]==) continue ;
if(m[i][k]!=m[j][now]) ok=false;
}
if(ok){
adde(i+n,j,INF,);
adde(j,i+n,,);
}
}
} int max_flow = ;
while(bfs(,*n+)){
for(int i=;i<=*n+;i++) cur[i]=head[i];
max_flow+=dfs(,INF);
}
printf("%d ",max_flow);
int tot=;
vector <pair<int,int> > ans[N];
for(int i=+n;i<=*n;i++){
for(int j=head[i];j!=-;j=e[j].next){
int v=e[j].v;
if(v!=*n+ && v!= && e[j].flow && v!=i-n) ans[i-n].push_back(make_pair(v,e[j].flow)),tot++;
}
}
printf("%d\n",tot);
for(int i=;i<=n;i++)
for(int j=;j<ans[i].size();j++){
printf("%d %d %d\n",i,ans[i][j].first,ans[i][j].second);
}
return ;
}

POJ3436:ACM Computer Factory(最大流)的更多相关文章

  1. POJ3436 ACM Computer Factory —— 最大流

    题目链接:https://vjudge.net/problem/POJ-3436 ACM Computer Factory Time Limit: 1000MS   Memory Limit: 655 ...

  2. poj-3436.ACM Computer Factory(最大流 + 多源多汇 + 结点容量 + 路径打印 + 流量统计)

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10940   Accepted:  ...

  3. POJ3436 ACM Computer Factory(最大流)

    题目链接. 分析: 题意很难懂. 大体是这样的:给每个点的具体情况,1.容量 2.进入状态 3.出去状态.求最大流. 因为有很多点,所以如果一个点的出去状态满足另一个点的进入状态,则这两个点可以连一条 ...

  4. POJ-3436 ACM Computer Factory 最大流 为何拆点

    题目链接:https://cn.vjudge.net/problem/POJ-3436 题意 懒得翻,找了个题意. 流水线上有N台机器装电脑,电脑有P个部件,每台机器有三个参数,产量,输入规格,输出规 ...

  5. POJ3436 ACM Computer Factory 【最大流】

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5412   Accepted: 1 ...

  6. poj3436 ACM Computer Factory, 最大流,输出路径

    POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...

  7. POJ3436 ACM Computer Factory(最大流/Dinic)题解

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8944   Accepted: 3 ...

  8. POJ-3436 ACM Computer Factory(网络流EK)

    As you know, all the computers used for ACM contests must be identical, so the participants compete ...

  9. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  10. POJ-3436:ACM Computer Factory (Dinic最大流)

    题目链接:http://poj.org/problem?id=3436 解题心得: 题目真的是超级复杂,但解出来就是一个网络流,建图稍显复杂.其实提炼出来就是一个工厂n个加工机器,每个机器有一个效率w ...

随机推荐

  1. Kubernetes-apiserver

    Kubernetes API服务器为API对象验证和配置数据,这些对象包含Pod.Service.ReplicationController等等.API Server提供REST操作以及前端到集群的共 ...

  2. Spyder在windows下常用快捷键

    块注释/反块注释:Ctrl+4/5 行注释/反行注释:Ctrl+1 代码提示:Tab 复制一行:Ctrl+Alt+↓/↑ 删除一行:Ctrl+D 运行:F5 全屏:F11 撤销:Ctrl+Z 反撤销: ...

  3. python2.7入门---break语句&continue语句&pass空语句

        这篇文章记录的就是比较好玩的东西了,也是比较重要的.咱们先来看一下break语句.Python break语句,就像在C语言中,打破了最小封闭for或while循环.break语句用来终止循环 ...

  4. Python字符串处理:过滤字符串中的英文与符号,保留汉字

    使用Python 的re模块,re模块提供了re.sub用于替换字符串中的匹配项. re.sub(pattern, repl, string, count=0) 参数说明: pattern:正则重的模 ...

  5. 0301001_Lesson1&2

    Lesson 1 Excuse me! 对不起! Listen to the tape then answer this question.Whose handbag is it?听录音,然后回答问题 ...

  6. MyEclipse - 问题集 - Java compiler level does not match the version of the installed Java project facet

    右键项目“Properties”,在弹出的“Properties”窗口左侧,单击“Project Facets”,打开“Project Facets”页面. 在页面中的“Java”下拉列表中,选择相应 ...

  7. 为什么说Objective-C是一门动态的语言?

    object-c类的类型和数据变量的类型都是在运行是确定的,而不是在编译时确定.例如:多态特性,我们可以使用父类对象来指向子类对象,并且可以用来调用子类的方法.运行时(runtime)特性,我们可以动 ...

  8. 【APUE】Chapter13 Daemon Processes

    这章节内容比较紧凑,主要有5部分: 1. 守护进程的特点 2. 守护进程的构造步骤及原理. 3. 守护进程示例:系统日志守护进程服务syslogd的相关函数. 4. Singe-Instance 守护 ...

  9. 「日常训练」 Mike and Fun (CFR305D2B)

    题意(CodeForces 548B) 每次对01矩阵中的一位取反,问每次操作后,单列中最长连续1的长度. 分析 非常非常简单,但是我当时训练的时候WA了四次...无力吐槽了,人间 不值得.jpg 代 ...

  10. cocos2d-x 键盘和鼠标事件

    出了菜单可以响应用户事件外,cocos2d中的层(Layer)也可以响应事件.层能够自动响应窗口事件,这些事件主要是键盘和鼠标事件,cocos2d中事件处理是通过Pyglet的事件处理完成的. 1.键 ...