ACM Computer Factory

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 9963   Accepted: 3738   Special Judge

题目链接:http://poj.org/problem?id=3436

Description:

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j — input specification for part j, Di,k — output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ N ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1
3 4
15 0 0 0 0 1 0
10 0 0 0 0 1 1
30 0 1 2 1 1 1
3 0 2 1 1 1 1
Sample input 2
3 5
5 0 0 0 0 1 0
100 0 1 0 1 0 1
3 0 1 0 1 1 0
1 1 0 1 1 1 0
300 1 1 2 1 1 1
Sample input 3
2 2
100 0 0 1 0
200 0 1 1 1

Sample Output

Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.
 
题意:
这个题意难度有点大呀TnT。
简单说就是给出n个机器,每个机器都有一个pi代表生产效率,然后后面有2*p个数,前p个代表输入规范,后p个代表输出规范。这里输入输出规范的意思就是这台机器可以把输入规范转化为输出规范。
输入规范里面0就是这里没有零件,1就是这里必须有零件,2就是这里可有可不有;输出规范里面就只有0,1,意义同上。
现在问最多可以生产出多少台电脑(假设机器的配合不消耗时间= =),只有输出规范全为1的机器可以生产电脑。
 

题解:

这题用最大流来做。首先建立一个超级源点和超级汇点,超级源点连上输入规范全为0,或有0也有2的机器,因为这些机器可以“无中生有”,边权为无穷大。

然后所有输出规范为1的机器就连向超级汇点,毕竟此时可以生成电脑,边权也为无穷大。

然后建立可以相互可达的机器之间的边,这里由于每个点有个生产效率的权值,所以我们考虑把点拆开为一条权值为其生产效率的有向边,拆成的两个点分别代表入读点和出度点。这样可以限定一条生产线上的生产效率。

然后直接跑最大流就好了~

最后统计结果的时候就随便统计一下就好了...毕竟special judge。如果一个出度点到一个入读点的边上面有流量,就代表了两个点之间有合作关系,就输出这两个点。

代码如下:

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
#define INF 99999999
using namespace std; const int N = ;
int P,n,tot;
int p[N],m[N][N],head[N],cur[N],d[N]; struct Edge{
int u,v,c,flow,next;
}e[N<<];
void adde(int u,int v,int w,int f){
e[tot].v=v;e[tot].u=u;e[tot].c=w;e[tot].flow=f;
e[tot].next=head[u];head[u]=tot++;
}
bool bfs(int s,int t){
for(int i=;i<=*n+;i++) d[i]=;d[s]=;
queue <int > q;q.push(s);
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(!d[v] && e[i].c>e[i].flow){
d[v]=d[u]+;
q.push(v);
}
}
}
return d[t]!=;
}
int dfs(int s,int a){
if(s==*n+ || a==) return a;
int flow = ;
for(int &i=cur[s];i!=-;i=e[i].next){
int v=e[i].v,f;
if(d[v]!=d[s]+) continue ;
f=dfs(v,min(a,e[i].c-e[i].flow));
if(f){
e[i].flow+=f;
e[i^].flow-=f;
a-=f;
flow+=f;
if(a==) break;
}
}
if(!flow) d[s]=-;
return flow;
}
int main(){
scanf("%d%d",&P,&n);
memset(head,-,sizeof(head));
for(int i=;i<=n;i++){
scanf("%d",&p[i]);
for(int j=;j<=*P;j++) scanf("%d",&m[i][j]);
} for(int i=;i<=n;i++){
adde(i,i+n,p[i],);
adde(i+n,i,,);
int flag1=,flag2=;
for(int j=;j<=P;j++){
if(m[i][j]==) flag1=;
if(m[i][j+P]!=) flag2=;
}
if(flag1) adde(,i,INF,),adde(i,,,);
if(flag2) adde(i+n,*n+,INF,),adde(*n+,i+n,,);
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(i==j) continue ;
bool ok = true ;
for(int k=P+;k<=P*;k++){
int now = k-P;
if(m[j][now]==) continue ;
if(m[i][k]!=m[j][now]) ok=false;
}
if(ok){
adde(i+n,j,INF,);
adde(j,i+n,,);
}
}
} int max_flow = ;
while(bfs(,*n+)){
for(int i=;i<=*n+;i++) cur[i]=head[i];
max_flow+=dfs(,INF);
}
printf("%d ",max_flow);
int tot=;
vector <pair<int,int> > ans[N];
for(int i=+n;i<=*n;i++){
for(int j=head[i];j!=-;j=e[j].next){
int v=e[j].v;
if(v!=*n+ && v!= && e[j].flow && v!=i-n) ans[i-n].push_back(make_pair(v,e[j].flow)),tot++;
}
}
printf("%d\n",tot);
for(int i=;i<=n;i++)
for(int j=;j<ans[i].size();j++){
printf("%d %d %d\n",i,ans[i][j].first,ans[i][j].second);
}
return ;
}

POJ3436:ACM Computer Factory(最大流)的更多相关文章

  1. POJ3436 ACM Computer Factory —— 最大流

    题目链接:https://vjudge.net/problem/POJ-3436 ACM Computer Factory Time Limit: 1000MS   Memory Limit: 655 ...

  2. poj-3436.ACM Computer Factory(最大流 + 多源多汇 + 结点容量 + 路径打印 + 流量统计)

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10940   Accepted:  ...

  3. POJ3436 ACM Computer Factory(最大流)

    题目链接. 分析: 题意很难懂. 大体是这样的:给每个点的具体情况,1.容量 2.进入状态 3.出去状态.求最大流. 因为有很多点,所以如果一个点的出去状态满足另一个点的进入状态,则这两个点可以连一条 ...

  4. POJ-3436 ACM Computer Factory 最大流 为何拆点

    题目链接:https://cn.vjudge.net/problem/POJ-3436 题意 懒得翻,找了个题意. 流水线上有N台机器装电脑,电脑有P个部件,每台机器有三个参数,产量,输入规格,输出规 ...

  5. POJ3436 ACM Computer Factory 【最大流】

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5412   Accepted: 1 ...

  6. poj3436 ACM Computer Factory, 最大流,输出路径

    POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...

  7. POJ3436 ACM Computer Factory(最大流/Dinic)题解

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8944   Accepted: 3 ...

  8. POJ-3436 ACM Computer Factory(网络流EK)

    As you know, all the computers used for ACM contests must be identical, so the participants compete ...

  9. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  10. POJ-3436:ACM Computer Factory (Dinic最大流)

    题目链接:http://poj.org/problem?id=3436 解题心得: 题目真的是超级复杂,但解出来就是一个网络流,建图稍显复杂.其实提炼出来就是一个工厂n个加工机器,每个机器有一个效率w ...

随机推荐

  1. ruby mysql2

    1. mysql2连接选项 Mysql2::Client.new( :host, :username, :password, :port, :database, :socket = '/path/to ...

  2. Tensorflow 笔记:第一讲

    一. 基本概念 1. 什么是人工智能 人工智能的概念: 机器模拟人的意识和思维 重要人物: 艾伦·麦席森·图灵( Alan Mathison Turing) 人物简介: 1912 年 6 月 23 日 ...

  3. Linux 控制台

    shell shell命令分为两种:分别是内部命令和外部命令. 内部命令:在安装的时候嵌入系统内核. 外部命令:以文件的形式存在. 可以使用type命令查看是内部命令还是外部命令. Linux中,默认 ...

  4. go学习笔记-程序测试

    程序测试 测试是一个可重复的过程,它验证某个东西是否按预期工作.一般通过 go test 进行测试,步骤如下 首先,是我们的文件名.Go 要求所有的测试都在以 _test.go 结尾的文件中.这使得我 ...

  5. Kubernetes-设计理念(三)

    Kubernetes设计理念与分布式系统 分析和理解Kubernetes的设计理念可以使我们更深入的了解Kubernetes系统,更好的利用它管理分布式部署的云原生应用,另一方面也可以让我们借鉴其在分 ...

  6. [HDU1512]Monkey King(左偏树)

    用并查集维护猴子们的关系,强壮值用左偏树维护就行了 Code #include <cstdio> #include <algorithm> #include <cstri ...

  7. 2 socket UDP通信

    1 socket套接字  class 对象 In [1]: import socket In [2]: help(socket.socket) class socket(_socket.socket) ...

  8. 发布npm包 登录报错 E409 Conflict

    1.到官网注册个账号,并且验证完邮箱:https://www.npmjs.com/ 2.打开cmd命令行 登录:$npm login 根据提示 一步步完成登录. 3.新建一个项目文件夹: npmtes ...

  9. 第一篇 Python安装与环境变量的配置

    开发语言有很多种,为什么选Python? 先对各种开发语言做个初识和分类如下:高级语言:Python Java.PHP C# Go ruby C++... ---> 字节码低级语言:C.汇编 - ...

  10. HTML5 本地存储Web Storage简单了解

    ​HTML5本地存储规范,定义了两个重要的API :Web Storage  和  本地数据库Web SQL Database. 本地存储Web Storage 实际上是HTML4的cookie存储机 ...