博客转载自:https://blog.csdn.net/u013158492/article/details/50485418

在上一篇文章中moveBase就有关于costmap_2d的使用: 
planner_costmap_ros_是用于全局导航的地图,controller_costmap_ros_是局部导航用的地图,地图类型为经过ROS封装的costmap_2d::Costmap2DROS*

  

ROS Costmap2DROS类的UML

看看这个类的成员变量:LayeredCostmap* layered_costmap_; pluginlib::ClassLoader<Layer> plugin_loader_; 这两个最重要的成员变量,而LayeredCostmap类又包含了Costmap2D costmap_; 这个数据成员。

类之间的关系

绿色的是核心代码,从ROS用户的角度,只需要调用Costmap2DROS这个类,因为这个类已经把所有关于地图的操作都封装好了。不过我这里是分析底层算法实现,就不得不写得很长很长。

所以还是先回到对Costmap2DROS这个类的分析,然后再进一步一层一层的分析其他的类。这些类完成了对机器人地图的表示和操作,因此其数据结构和算法都很有分析的价值。首先是构造函数Costmap2DROS::Costmap2DROS(std::string name, tf::TransformListener& tf), 因此必须提供一个tf参数。tf参数需要提供以下两个坐标系的关系:

// get two frames
private_nh.param("global_frame", global_frame_, std::string("/map"));
private_nh.param("robot_base_frame", robot_base_frame_, std::string("base_link"));

如果没有找到这两个坐标系的关系或者超时,则构造函数会一直阻塞在这里:

while (ros::ok()
&& !tf_.waitForTransform(global_frame_,robot_base_frame_,ros::Time(), ros::Duration(0.1), ros::Duration(0.01),&tf_error))
{
ros::spinOnce();
if (last_error + ros::Duration(5.0) < ros::Time::now())
{
last_error = ros::Time::now();
}
tf_error.clear();
}

然后加入各个层次的地图:

if (private_nh.hasParam("plugins"))
{
XmlRpc::XmlRpcValue my_list;
private_nh.getParam("plugins", my_list);
for (int32_t i = 0; i < my_list.size(); ++i)
{
std::string pname = static_cast<std::string>(my_list[i]["name"]);
std::string type = static_cast<std::string>(my_list[i]["type"]);
ROS_INFO("Using plugin \"%s\"", pname.c_str()); boost::shared_ptr<Layer> plugin =lugin_loader_.createInstance(type);
layered_costmap_->addPlugin(plugin);
plugin->initialize(layered_costmap_, name + "/" + pname, &tf_);
}
}

boost::shared_ptr<Layer> plugin = plugin_loader_.createInstance(type); 这行会创建一个以 type为类类型的实例变量,然后让plugin这个指针指向这个实例。

layered_costmap_->addPlugin(plugin);

然后layered_costmap_ 将这些类型的地图都加入,addPlugin 实现:

void addPlugin(boost::shared_ptr<Layer> plugin)
{
plugins_.push_back(plugin);
}

这里的关系是:Costmap2DROS 有一个layered_costmap_ 数据成员,然后layered_costmap_ 又有一个std::vector<boost::shared_ptr<Layer> > plugins_; 成员,因此可以将各个子类的实例化对象的指针交给父类Layer 指针plugins_ 管理。

plugin->initialize(layered_costmap_, name + "/" + pname, &tf_);

这行将会对实例初始化,实际执行是plugin调用的父类Layer的方法void Layer::initialize(LayeredCostmap* parent, std::string name, tf::TransformListener *tf) 。

实际上父类Layer有一个成员变量为LayeredCostmap* layered_costmap_的指针,因此通过LayeredCostmap* layered_costmap_指针指向了具体的子类,比如ObstacleLayer StaticLayer InflationLayer 等。

然后设置footprint:footprint_sub_ = private_nh.subscribe(topic, 1, &Costmap2DROS::setUnpaddedRobotFootprintPolygon, this) ,回调函数setUnpaddedRobotFootprintPolygon 实际调用的是成员函数:

void Costmap2DROS::setUnpaddedRobotFootprint(const std::vector<geometry_msgs::Point>& points)
{
unpadded_footprint_ = points;
padded_footprint_ = points;
padFootprint(padded_footprint_, footprint_padding_);//这个函数是在padded_footprint_基础上膨胀,增加了footprint_padding_ layered_costmap_->setFootprint(padded_footprint_);
}
//以下是在footprint.cpp中的定义:
void padFootprint(std::vector<geometry_msgs::Point>& footprint, double padding)
{
// pad footprint in place
for (unsigned int i = 0; i < footprint.size(); i++)
{
geometry_msgs::Point& pt = footprint[ i ];
pt.x += sign0(pt.x) * padding;
pt.y += sign0(pt.y) * padding;
}
}

然后声明了一个timer,定时检测机器人是否在移动:

// Create a time r to check if the robot is moving
robot_stopped_ = false;
timer_ = private_nh.createTimer(ros::Duration(.1),&Costmap2DROS::movementCB, this);

这里回调函数movementCB 实现,是通过比较前后两个pose的差,判断机器人是否在移动:

void Costmap2DROS::movementCB(const ros::TimerEvent &event)
{
tf::Stamped < tf::Pose > new_pose;
if (!getRobotPose(new_pose))
{
robot_stopped_ = false;
}
else if (fabs((old_pose_.getOrigin() - new_pose.getOrigin()).length()) < 1e-3
&& fabs(old_pose_.getRotation().angle(new_pose.getRotation())) < 1e-3)
{
old_pose_ = new_pose;
robot_stopped_ = true;
}
else
{
old_pose_ = new_pose;
robot_stopped_ = false;
}
}

在构造函数末尾,开启参数动态配置:

dsrv_ = new dynamic_reconfigure::Server<Costmap2DConfig>(ros::NodeHandle("~/" + name));
dynamic_reconfigure::Server<Costmap2DConfig>::CallbackType cb = boost::bind(&Costmap2DROS::reconfigureCB, this, _1, _2);
dsrv_->setCallback(cb);

回调函数reconfigureCB 除了对一些类成员的配置值做赋值以外,还会开启一个更新map的线程

map_update_thread_ = new boost::thread(boost::bind(&Costmap2DROS::mapUpdateLoop, this, map_update_frequency));

更新map的线程函数定义:

void Costmap2DROS::mapUpdateLoop(double frequency)
{
if (frequency == 0.0) return;
ros::NodeHandle nh;
ros::Rate r(frequency);
while (nh.ok() && !map_update_thread_shutdown_)
{
struct timeval start, end;
double start_t, end_t, t_diff;
gettimeofday(&start, NULL); updateMap(); gettimeofday(&end, NULL);
start_t = start.tv_sec + double(start.tv_usec) / 1e6;
end_t = end.tv_sec + double(end.tv_usec) / 1e6;
t_diff = end_t - start_t;
ROS_DEBUG("Map update time: %.9f", t_diff);
if (publish_cycle.toSec() > 0 && layered_costmap_->isInitialized())
{
unsigned int x0, y0, xn, yn;
layered_costmap_->getBounds(&x0, &xn, &y0, &yn);
publisher_->updateBounds(x0, xn, y0, yn); ros::Time now = ros::Time::now();
if (last_publish_ + publish_cycle < now)
{
publisher_->publishCostmap();
last_publish_ = now;
}
}
r.sleep();
// make sure to sleep for the remainder of our cycle time
if (r.cycleTime() > ros::Duration(1 / frequency))
ROS_WARN("Map update loop missed its desired rate of %.4fHz... the loop actually took %.4f seconds", frequency,
r.cycleTime().toSec());
}
}

核心功能在于调用updateMap()

void Costmap2DROS::updateMap()
{
if (!stop_updates_)
{
// get global pose
tf::Stamped < tf::Pose > pose;
if (getRobotPose (pose))
{
double x = pose.getOrigin().x(),
y = pose.getOrigin().y(),
yaw = tf::getYaw(pose.getRotation());
layered_costmap_->updateMap(x, y, yaw);
initialized_ = true;
}
}
}

函数layered_costmap_->updateMap(x, y, yaw)定义

void LayeredCostmap::updateMap(double robot_x, double robot_y, double robot_yaw)
{
// if we're using a rolling buffer costmap... we need to update the origin using the robot's position
if (rolling_window_)
{
double new_origin_x = robot_x - costmap_.getSizeInMetersX() / 2;
double new_origin_y = robot_y - costmap_.getSizeInMetersY() / 2;
costmap_.updateOrigin(new_origin_x, new_origin_y);
} if (plugins_.size() == 0)
return; minx_ = miny_ = 1e30;
maxx_ = maxy_ = -1e30; for (vector<boost::shared_ptr<Layer> >::iterator plugin = plugins_.begin(); plugin != plugins_.end();
++plugin)
{
(*plugin)->updateBounds(robot_x, robot_y, robot_yaw, &minx_, &miny_, &maxx_, &maxy_);
} int x0, xn, y0, yn;
costmap_.worldToMapEnforceBounds(minx_, miny_, x0, y0);
costmap_.worldToMapEnforceBounds(maxx_, maxy_, xn, yn); x0 = std::max(0, x0);
xn = std::min(int(costmap_.getSizeInCellsX()), xn + 1);
y0 = std::max(0, y0);
yn = std::min(int(costmap_.getSizeInCellsY()), yn + 1); ROS_DEBUG("Updating area x: [%d, %d] y: [%d, %d]", x0, xn, y0, yn); if (xn < x0 || yn < y0)
return; {
// Clear and update costmap under a single lock
boost::unique_lock<Costmap2D::mutex_t> lock(*(costmap_.getMutex()));
costmap_.resetMap(x0, y0, xn, yn);
for (vector<boost::shared_ptr<Layer> >::iterator plugin = plugins_.begin(); plugin != plugins_.end();
++plugin)
{
(*plugin)->updateCosts(costmap_, x0, y0, xn, yn);
}
} bx0_ = x0;
bxn_ = xn;
by0_ = y0;
byn_ = yn; initialized_ = true;
}

updateMap 分为两个阶段,第一个阶段是UpdateBounds

(*plugin)->updateBounds(robot_x, robot_y, robot_yaw, &minx_, &miny_, &maxx_, &maxy_);

这个阶段会更新每个Layer的更新区域,这样在每个运行周期内减少了数据拷贝的操作时间。

第二个阶段是 UpdateCosts

(*plugin)->updateCosts(costmap_, x0, y0, xn, yn);

这个阶段将逐一拷贝数据到Master Map,关于Master Map是如何得到的,见下图,图来源于David Lu的Paper《Layered Costmaps for Context-Sensitive Navigation》

函数void Costmap2DROS::start()

void Costmap2DROS::start()
{
std::vector < boost::shared_ptr<Layer> > *plugins = layered_costmap_->getPlugins();
// check if we're stopped or just paused
if (stopped_)
{
// if we're stopped we need to re-subscribe to topics
for (vector<boost::shared_ptr<Layer> >::iterator plugin = plugins->begin(); plugin != plugins->end();
++plugin)
{
(*plugin)->activate();
}
stopped_ = false;
}
stop_updates_ = false;
// block until the costmap is re-initialized.. meaning one update cycle has run
ros::Rate r(100.0);
while (ros::ok() && !initialized_)
r.sleep();
}

这里通过成员变量layered_costmap_拿到类LayeredCostmap的数据成员std::vector<boost::shared_ptr<Layer> > plugins_; ,然后调用这个Layer 的子类的方法(*plugin)->activate();

函数Costmap2DROS::stop()

void Costmap2DROS::stop()
{
stop_updates_ = true;
std::vector < boost::shared_ptr<Layer> > *plugins = layered_costmap_->getPlugins();
// unsubscribe from topics
for (vector<boost::shared_ptr<Layer> >::iterator plugin = plugins->begin(); plugin != plugins->end();
++plugin)
{
(*plugin)->deactivate();
}
initialized_ = false;
stopped_ = true;
}

函数Costmap2DROS::resetLayers()

void Costmap2DROS::resetLayers()
{
Costmap2D* top = layered_costmap_->getCostmap();
top->resetMap(0, 0, top->getSizeInCellsX(), top->getSizeInCellsY());
std::vector < boost::shared_ptr<Layer> > *plugins = layered_costmap_->getPlugins();
for (vector<boost::shared_ptr<Layer> >::iterator plugin = plugins->begin(); plugin != plugins->end();++plugin)
{
(*plugin)->reset();
}
}

函数Costmap2DROS::getRobotPose

bool Costmap2DROS::getRobotPose(tf::Stamped<tf::Pose>& global_pose) const
{
global_pose.setIdentity();
tf::Stamped < tf::Pose > robot_pose;
robot_pose.setIdentity();
robot_pose.frame_id_ = robot_base_frame_;
robot_pose.stamp_ = ros::Time();
// get the global pose of the robot
tf_.transformPose(global_frame_, robot_pose, global_pose);
}

这里只需要指定global_pose 和 robot_pose 各自的frame_id_ 就可以通过tf_.transformPose(global_frame_, robot_pose, global_pose)获得 global_pose 。

函数 Costmap2DROS::getOrientedFootprint(std::vector<geometry_msgs::Point>& oriented_footprint) const 完成将机器人坐标系下的机器人轮廓点的坐标转化为机器人在当前全局坐标系下的轮廓点的值。具体定义如下:

void transformFootprint(double x, double y, double theta, const std::vector<geometry_msgs::Point>& footprint_spec,
std::vector<geometry_msgs::Point>& oriented_footprint)
{
// build the oriented footprint at a given location
oriented_footprint.clear();
double cos_th = cos(theta);
double sin_th = sin(theta);
for (unsigned int i = 0; i < footprint_spec.size(); ++i)
{
geometry_msgs::Point new_pt;
new_pt.x = x + (footprint_spec[i].x * cos_th - footprint_spec[i].y * sin_th);
new_pt.y = y + (footprint_spec[i].x * sin_th + footprint_spec[i].y * cos_th);
oriented_footprint.push_back(new_pt);
}
}

到此,基本上 Costmap2DROS 的定义就这么多了。不过其中类和类之间的调用关系依然还是很复杂,因此需要需要分析plugin原理,才能真正知道这些类的关系是如何实现的。 接下来分析costma_2d的其他类。

ROS naviagtion analysis: costmap_2d--Costmap2DROS的更多相关文章

  1. ROS naviagtion analysis: move_base

    博客转载自:https://blog.csdn.net/u013158492/article/details/50483123 这是navigation的第一篇文章,主要通过分析ROS代码级实现,了解 ...

  2. ROS naviagtion analysis: costmap_2d--ObstacleLayer

    博客转载自:https://blog.csdn.net/u013158492/article/details/50493676 构造函数 ObstacleLayer() { costmap_ = NU ...

  3. ROS naviagtion analysis: costmap_2d--StaticLayer

    博客转载自:https://blog.csdn.net/u013158492/article/details/50493246 从UML中能够看到,StaticLayer主要是在实现Layer层要求实 ...

  4. ROS naviagtion analysis: costmap_2d--LayeredCostmap

    博客转自:https://blog.csdn.net/u013158492/article/details/50490490 在数据成员中,有两个重要的变量:Costmap2D costmap_和 s ...

  5. ROS naviagtion analysis: costmap_2d--CostmapLayer

    博客转自:https://blog.csdn.net/u013158492/article/details/50493220 这个类是为ObstacleLayer StaticLayer voxelL ...

  6. ROS naviagtion analysis: costmap_2d--Layer

    博客转载自:https://blog.csdn.net/u013158492/article/details/50493113 这个类中有一个LayeredCostmap* layered_costm ...

  7. ROS naviagtion analysis: costmap_2d--Costmap2D

    博客转载自:https://blog.csdn.net/u013158492/article/details/50492506 Costmap2D是存储地图数据的父类.真正的地图数据就存储在数据成员u ...

  8. move_base代码学习一

    System overview move_base 源码 API nav_core BaseGlobalPlanner BaseLocalPlanner RecoveryBehavior Recove ...

  9. ROS导航之地图costmap_2d与bresenham算法

    读者可以参读http://wiki.ros.org/costmap_2d   costmap_2d: 无论是激光雷达还是如kinect 或xtion pro深度相机作为传感器跑出的2D或3D SLAM ...

随机推荐

  1. 洛谷 P3015 [USACO11FEB]最好的括号Best Parenthesis

    传送门 题目大意:给出括号的得分标准. ()得分为1,如果A的得分为S(A),那么 (A)的得分为2*S(A). 题解:搜索 #include<iostream> #include< ...

  2. 十、python沉淀之路--高阶函数初识

    一.高阶函数:分两种:一种是返回值中包含函数体:另一种是把一个函数体当作了参数传给了另一个函数 1.返回值中包含函数体 例1. def test(): print('这是一个测试') return t ...

  3. 使用 key 登录时分开记录操作历史记录

    线上服务器一般都是配置 key 登录,一个账号可以多个工作人员连接,操作命令历史却全部记录在一个文件中,当然后查看某条命令是谁执行的时候就不好查了.这时候我们就可以通过配置 histroy 相关环境变 ...

  4. Mysql ERROR 1032 (HY000): Can't find record in TABLE

    最近用Mysql出现一个很奇怪的问题. 用SELECT * FROM `v_vod` ORDER BY vod_addtime desc LIMIT 0,18查询得到1个错误 ERROR 1032 ( ...

  5. phpcms文档

    http://www.phpcms.cn/doc/PHPCMSDocumentor/cache_module.html http://www.cnblogs.com/Braveliu/p/507493 ...

  6. vue参考

    https://github.com/taylorchen709/vue-admin http://element-cn.eleme.io/#/zh-CN/component/layout https ...

  7. Data_Structure-绪论作业

    一.作业题目 仿照三元组或复数的抽象数据类型写出有理数抽象数据类型的描述 (有理数是其分子.分母均为整数且分母不为零的分数). 有理数基本运算: 构造有理数T,元素e1,e2分别被赋以分子.分母值 销 ...

  8. 浅谈FPGA的选型

    工欲善其事必先利其器,开发FPGA的第一步,当然是选择一片符合设计需求的芯片. 器件特色 选片第一个关注的应该是FPGA器件的专用资源. 例如是否需要高速接口,如果需要的话,需要多少个通道,各个通道需 ...

  9. MFC学习(六)计算器

    1 stdafx.h  所谓头文件预编译,就是把一个工程(Project)中使用的一些MFC标准头文件(如Windows.H.Afxwin.H)预先编译,以后该工程编译时,不再编译这部分头文件,仅仅使 ...

  10. ZedGraph类库之基本教程篇

      第一部分:基本教程篇                 ZedGraphDemo中一共有9个基本教程的例子.其中大部分都类似,我会讲解其中一些比较典型的例子.把ZedGraph类库的使用逐步展现给大 ...