POJ2186 强连通分量+缩点
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 40234 | Accepted: 16388 |
Description
popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow.
Input
* Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular.
Output
Sample Input
3 3
1 2
2 1
2 3
Sample Output
1
Hint
Source
题意:强连通分量缩点图求出度为0的点。
思路:首先图要连通,其次出度为零的强连通分量个数只能为1.
代码:
#include"bits/stdc++.h" #define db double
#define ll long long
#define vl vector<ll>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define rep(i, a, n) for (int i=a;i<n;i++)
#define per(i, a, n) for (int i=n-1;i>=a;i--)
#define fi first
#define se second
using namespace std;
typedef pair<int, int> pii;
const int N = 1e6 + ;
const int mod = 1e9 + ;
const int MOD = ;
const db PI = acos(-1.0);
const db eps = 1e-;
const ll INF = 0x3fffffffffffffff;
int n, m;
int cnt, num, id;
int head[N];
bool ins[N];
int out[N];
int dfn[N], low[N];
int beg[N];
stack<int> s;
struct P {int to, nxt;} e[N]; void add(int u, int v) {
e[cnt].to = v;
e[cnt].nxt = head[u];
head[u] = cnt++;
} void tarjan(int u) {
low[u] = dfn[u] = ++id;
ins[u] = ;
s.push(u);
for (int i = head[u]; ~i; i = e[i].nxt) {
int v = e[i].to;
if (!dfn[v]) tarjan(v), low[u] = min(low[u], low[v]);
else if (ins[v]) low[u] = min(low[u], dfn[v]);
}
if (low[u] == dfn[u]) {
int v;
do {
v = s.top();
s.pop();
ins[v] = ;
beg[v] = num;//缩点
} while (u != v);
num++;
}
} int fa[N];
bool vis[N]; int find(int x) { return x == fa[x] ? x : fa[x] = find(fa[x]); }
void unio(int x, int y) {
int xx = find(x), yy = find(y);
if (xx != yy) fa[xx] = yy;
}
void init() {
memset(head, -, sizeof(head));
memset(low, , sizeof(low));
memset(dfn, , sizeof(dfn));
memset(ins, , sizeof(ins));
memset(out, , sizeof(out));
memset(beg, , sizeof(beg));
memset(vis,, sizeof(vis));
for (int i = ; i <= n; i++) fa[i] = i;
cnt = num = id = ;
}
int main() {
while (scanf("%d%d", &n, &m) == ) {
init();
for (int i = ; i < m; i++) {
int x, y;
ci(x), ci(y);
add(x, y);
unio(x, y);
}
for (int i = ; i <= n; i++) if (!dfn[i]) tarjan(i);
for (int i = ; i <= n; i++) {
for (int j = head[i]; ~j; j = e[j].nxt) {
int v = e[j].to;
if (beg[i] != beg[v]) out[beg[i]]++;
}
}
int ok = ;
int x = find();
for (int i = ; i <= n; i++)//联通
if (find(i) != x) {
ok = ;
break;
}
int tmp = , cnt = ;
for (int i = ; i <=n; i++) {//强连通分量个数
if (!out[beg[i]]){
if(!vis[beg[i]]) vis[beg[i]]=,cnt++;
tmp++;
}
}
if (cnt==&&ok==) pi(tmp);
else puts("");
}
return ;
}
POJ2186 强连通分量+缩点的更多相关文章
- POJ2186 (强连通分量缩点后出度为0的分量内点个数)
Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 27820 Accepted: 11208 De ...
- POJ1236Network of Schools[强连通分量|缩点]
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16571 Accepted: 65 ...
- POJ1236Network of Schools(强连通分量 + 缩点)
题目链接Network of Schools 参考斌神博客 强连通分量缩点求入度为0的个数和出度为0的分量个数 题目大意:N(2<N<100)各学校之间有单向的网络,每个学校得到一套软件后 ...
- HD2767Proving Equivalences(有向图强连通分量+缩点)
题目链接 题意:有n个节点的图,现在给出了m个边,问最小加多少边是的图是强连通的 分析:首先找到强连通分量,然后把每一个强连通分量缩成一个点,然后就得到了一个DAG.接下来,设有a个节点(每个节点对应 ...
- UVa11324 The Largest Clique(强连通分量+缩点+记忆化搜索)
题目给一张有向图G,要在其传递闭包T(G)上删除若干点,使得留下来的所有点具有单连通性,问最多能留下几个点. 其实这道题在T(G)上的连通性等同于在G上的连通性,所以考虑G就行了. 那么问题就简单了, ...
- ZOJ3795 Grouping(强连通分量+缩点+记忆化搜索)
题目给一张有向图,要把点分组,问最少要几个组使得同组内的任意两点不连通. 首先考虑找出强连通分量缩点后形成DAG,强连通分量内的点肯定各自一组,两个强连通分量的拓扑序能确定的也得各自一组. 能在同一组 ...
- POJ2553 The Bottom of a Graph(强连通分量+缩点)
题目是问,一个有向图有多少个点v满足∀w∈V:(v→w)⇒(w→v). 把图的强连通分量缩点,那么答案显然就是所有出度为0的点. 用Tarjan找强连通分量: #include<cstdio&g ...
- uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...
- poj 2762 Going from u to v or from v to u?(强连通分量+缩点重构图+拓扑排序)
http://poj.org/problem?id=2762 Going from u to v or from v to u? Time Limit: 2000MS Memory Limit: ...
随机推荐
- C# 调用第三方DLL z
http://blog.163.com/da7_1@126/blog/static/104072678201311721326318/ 以下代码为本人在实际项目中编写的调用第三方DLL接口程序的完整代 ...
- Selenium2学习(八)-- 操作元素(键盘和鼠标事件)
前言 在前面的几篇中重点介绍了一些元素的到位方法,到位到元素后,接下来就是需要操作元素了.本篇总结了web页面常用的一些操作元素方法,可以统称为行为事件 有些web界面的选项菜单需要鼠标悬停在某个元素 ...
- Machine Learing 入门 —— 开门第0篇
一.最近懒了 7月没怎么写博客,倒是一直在学Machine Learning的入门知识,在这里给大家推荐一个不错的自学网站:https://www.coursera.org/ ,Andrew Ng是联 ...
- 三、HTTP协议
1. 基础概念篇 HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维网(WWW:World Wide Web )服务器传输超文本到本地浏览器的 ...
- 2018.10.2 Eclipse中如何测地修改一个we项目步骤
找到项目的web.xml文件 大概的路径如下: 修改xml文件中的display-name 节点的值 下一步就是切换工作目录 显示的效果 打开最后一个文件修改 接下来找到这个文件 是部署的时候用的 运 ...
- 使用paramiko的问题记录
用paramiko时遇到问题,异常如下: 解决方法记录如下: 更新gmp版本: wget https://ftp.gnu.org/gnu/gmp/gmp-6.0.0a.tar.bz2 tar -xvj ...
- sql得到表中的列信息
取列全部用的 sys. 中的表 CTE:WITH name AS() 用法: sql树形查询 ①主键信息 SELECT ic.column_id, ic.index_column_id, ic.o ...
- c语言描述的双向链表的基本操作
#include<stdio.h> #include<stdlib.h> #define ok 1 #define error 0 typedef int Status; ty ...
- js数组去重(多种方法)
// js数组去重 Array.prototype.fun1 = function(){ var arr = this, result = [], i, len = arr.length; for(i ...
- Eslint代码规范