题目链接

BZOJ3238

题解

简单题

经典后缀数组 + 单调栈套路,求所有后缀\(lcp\)

#include<iostream>
#include<cstdio>
#include<cmath>
#include<map>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define cls(s) memset(s,0,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 500005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
char s[maxn];
int sa[maxn],rank[maxn],height[maxn],bac[maxn],t1[maxn],t2[maxn],n,m;
void getsa(){
int *x = t1,*y = t2; m = 255;
for (int i = 0; i <= m; i++) bac[i] = 0;
for (int i = 1; i <= n; i++) bac[x[i] = s[i]]++;
for (int i = 1; i <= m; i++) bac[i] += bac[i - 1];
for (int i = n; i; i--) sa[bac[x[i]]--] = i;
for (int k = 1; k <= n; k <<= 1){
int p = 0;
for (int i = n - k + 1; i <= n; i++) y[++p] = i;
for (int i = 1; i <= n; i++) if (sa[i] - k > 0) y[++p] = sa[i] - k;
for (int i = 0; i <= m; i++) bac[i] = 0;
for (int i = 1; i <= n; i++) bac[x[y[i]]]++;
for (int i = 1; i <= m; i++) bac[i] += bac[i - 1];
for (int i = n; i; i--) sa[bac[x[y[i]]]--] = y[i];
swap(x,y);
x[sa[1]] = p = 1;
for (int i = 2; i <= n; i++)
x[sa[i]] = (y[sa[i]] == y[sa[i - 1]] && y[sa[i] + k] == y[sa[i - 1] + k] ? p : ++p);
if (p >= n) break;
m = p;
}
for (int i = 1; i <= n; i++) rank[sa[i]] = i;
for (int i = 1,k = 0; i <= n; i++){
if (k) k--;
int j = sa[rank[i] - 1];
while (s[i + k] == s[j + k]) k++;
height[rank[i]] = k;
}
}
cp st[maxn],t;
int top;
void solve(){
LL sum = 0,ans = 0;
for (int i = 2; i <= n; i++){
t = mp(height[i],1);
while (top && st[top].first >= t.first){
sum -= 1ll * st[top].first * st[top].second;
t.second += st[top].second;
top--;
}
st[++top] = t;
sum += 1ll * t.first * t.second;
ans += sum;
}
printf("%lld\n",1ll * n * (n + 1) * (n - 1) / 2 - 2 * ans);
}
int main(){
scanf("%s",s + 1); n = strlen(s + 1);
getsa();
solve();
return 0;
}

BZOJ3238 [Ahoi2013]差异 【后缀数组 + 单调栈】的更多相关文章

  1. bzoj3238 [Ahoi2013]差异 后缀数组+单调栈

    [bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...

  2. 【BZOJ-3238】差异 后缀数组 + 单调栈

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1561  Solved: 734[Submit][Status] ...

  3. 【BZOJ3238】[Ahoi2013]差异 后缀数组+单调栈

    [BZOJ3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...

  4. BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2326  Solved: 1054[Submit][Status ...

  5. [AHOI2013] 差异 - 后缀数组,单调栈

    [AHOI2013] 差异 Description 求 \(\sum {len(T_i) + len(T_j) - 2 lcp(T_i,T_j)}\) 的值 其中 \(T_i (i = 1,2,... ...

  6. 【bzoj3238】差异[AHOI2013](后缀数组+单调栈)

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3238 这道题从大概半年以前就开始啃了,不过当时因为一些细节没调出来,看了Sakits神犇 ...

  7. [BZOJ3238][AHOI2013]差异(后缀数组)

    求和式的前两项可以直接算,问题是对于每对i,j计算LCP. 一个比较显然的性质是,LCP(i,j)是h[rk[i]+1~rk[j]]中的最小值. 从h的每个元素角度考虑,就是对每个h计算有多少对i,j ...

  8. BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈

    BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao ...

  9. bzoj 3238: [Ahoi2013]差异 -- 后缀数组

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MB Description Input 一行,一个字符串S Output 一行,一个 ...

随机推荐

  1. html5 canvas中CanvasGradient对象用法

    html5 中canvas提供了强大的渲染样式,可以实现一些比较复杂的样式设置,今天学习了CanvasGradient对象可以实现一个颜色的渐变 CanvasGradient对象可以实现两种不同形式的 ...

  2. 爬虫学习(十六)——jsonpath

    jsonpath介绍 jsonpath是一种信息抽取类库,是从json文档中抽取指定信息的工具,提供多种语言实现的版本 jsonpath对json来说,就相当于xpath对于xml jsonpath和 ...

  3. Hbase学习指南

    本篇Hbase组件基于CDH5进行安装,安装过程:https://www.cnblogs.com/dmjx/p/10037066.html Hbase简介 HBase是一个高可靠.高性能.面向列.可伸 ...

  4. Linq to SQL八大子句

    查询数据库中的数据 from- in子句 指定查询操作的数据源和范围变量 select子句 指定查询结果的类型和表现形式 where子句 筛选元素的逻辑条件,一般由逻辑运算符组成 group- by子 ...

  5. JAVAOOP接口

    狭义接口:用来约束实现类中方法的长相的. 广义接口:已将编写好的功能. 1.接口中的方法都是抽象方法,没有方法体,必须被子类重写 2.java的接口变量都是静态常量 3.接口方法只不过是用来约束现实类 ...

  6. 【JavaScript高级程序设计】6.1 理解对象

    上一章曾经介绍过,创建自定义对象的最简单方式就是创建一个Object 的实例,然后再为它添加属性和方法,如下所示. var person = new Object(); person.name = & ...

  7. elasticsearch 5.x 系列之二 线程池的设置

    1,概述 每个Elasticsearch节点内部都维护着多个线程池,如index.search.get.bulk等,用户可以修改线程池的类型和大小,以及其他的比如reflesh, flush,warm ...

  8. python3 练习题100例 (十六)鸡尾酒疗法

    #!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'Fan Lijun' n = input('请输入一个大于1,小于等于20的整 ...

  9. Python系列6之面向对象

    目录 生成器和迭代器 字符串格式化 内置函数vars 反射 面向对象编程 一. 生成器和迭代器  1. 生成器 生成器具有一种生成的能力,它仅仅代表着一种生成的能力,当我们需要使用的时候,才会通过迭代 ...

  10. 开放定址法——平方探测(Quadratic Probing)

    为了消除一次聚集,我们使用一种新的方法:平方探测法.顾名思义就是冲突函数F(i)是二次函数的探测方法.通常会选择f(i)=i2.和上次一样,把{89,18,49,58,69}插入到一个散列表中,这次用 ...