Let it Bead
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6443   Accepted: 4315

Description

"Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is beads. Their PR department found out that customers are interested in buying colored bracelets. However, over 90 percent of the target audience insists that the bracelets be unique. (Just imagine what happened if two women showed up at the same party wearing identical bracelets!) It's a good thing that bracelets can have different lengths and need not be made of beads of one color. Help the boss estimating maximum profit by calculating how many different bracelets can be produced.

A bracelet is a ring-like sequence of s beads each of which can have one of c distinct colors. The ring is closed, i.e. has no beginning or end, and has no direction. Assume an unlimited supply of beads of each color. For different values of s and c, calculate the number of different bracelets that can be made.

Input

Every line of the input file defines a test case and contains two integers: the number of available colors c followed by the length of the bracelets s. Input is terminated by c=s=0. Otherwise, both are positive, and, due to technical difficulties in the bracelet-fabrication-machine, cs<=32, i.e. their product does not exceed 32.

Output

For each test case output on a single line the number of unique bracelets. The figure below shows the 8 different bracelets that can be made with 2 colors and 5 beads.

Sample Input

1 1
2 1
2 2
5 1
2 5
2 6
6 2
0 0

Sample Output

1
2
3
5
8
13
21

Source

感觉这玩意儿认真的好神奇啊qwq。

为什么网上都是直接说循环节的大小但是不做说明qwq、、

算了还是背结论吧

若是直接旋转,那么有$n$中置换,第$i$种循环节数为$gcd(n, i)$

如果是对称

对于奇数来说,可以固定一个点,让其他点交换。共有$n$个点,每种循环节为$\frac{n + 1}{2}$

对于偶数来说,有两种对称方式,

一种是以中线为中心,两边对称,共有$N / 2$种方式,每种循环节为$\frac{n + 2}{2}$

另一种是两个点的连线为中心,两边对称,共有$N/ 2$种方式,每种循环节为$\frac{n}{2}$

然后直接上polya定理就行了

POJ的评测机也是没谁了

#include<cstdio>
#include<algorithm>
#include<cmath>
#include<map>
#define LL long long
const int MAXN = 1e5 + ;
using namespace std;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int C, N;
int fastpow(int a, int p) {
int base = ;
while(p) {
if(p & ) base = base * a;
a = a * a; p >>= ;
}
return base;
}
main() {
while(scanf("%d %d", &C, &N)) {
if(C == && N == ) break;
int ans = ;
for(int i = ; i <= N; i++) ans += fastpow(C, __gcd(i, N));
if(N & ) ans = ans + N * fastpow(C, (N + ) / );
else ans = ans + N / * (fastpow(C, (N + ) / ) + fastpow(C, N / ));
printf("%d\n", ans / / N);
}
}

POJ2409 Let it Bead(Polya定理)的更多相关文章

  1. 【POJ2409】Let it Bead Pólya定理

    [POJ2409]Let it Bead 题意:用$m$种颜色去染$n$个点的环,如果两个环在旋转或翻转后是相同的,则称这两个环是同构的.求不同构的环的个数. $n,m$很小就是了. 题解:在旋转$i ...

  2. 置换群 Burnside引理 Pólya定理(Polya)

    置换群 设\(N\)表示组合方案集合.如用两种颜色染四个格子,则\(N=\{\{0,0,0,0\},\{0,0,0,1\},\{0,0,1,0\},...,\{1,1,1,1\}\}\),\(|N|= ...

  3. 【BZOJ1478】Sgu282 Isomorphism Pólya定理神题

    [BZOJ1478]Sgu282 Isomorphism 题意:用$m$种颜色去染一张$n$个点的完全图,如果一个图可以通过节点重新标号变成另外一个图,则称这两个图是相同的.问不同的染色方案数.答案对 ...

  4. 【POJ2154】Color Pólya定理+欧拉函数

    [POJ2154]Color 题意:求用$n$种颜色染$n$个珠子的项链的方案数.在旋转后相同的方案算作一种.答案对$P$取模. 询问次数$\le 3500$,$n\le 10^9,P\le 3000 ...

  5. 数学:Burnside引理与Pólya定理

    这个计数定理在考虑对称的计数中非常有用 先给出这个定理的描述,虽然看不太懂: 在一个置换群G={a1,a2,a3……ak}中,把每个置换都写成不相交循环的乘积. 设C1(ak)是在置换ak的作用下不动 ...

  6. 置换及Pólya定理

    听大佬们说了这么久Pólya定理,终于有时间把这个定理学习一下了. 置换(permutation)简单来说就是一个(全)排列,比如 \(1,2,3,4\) 的一个置换为 \(3,1,2,4\).一般地 ...

  7. Burnside引理&Pólya定理

    Burnside's lemma 引例 题目描述 一个由2*2方格组成的正方形,每个格子上可以涂色或不涂色, 问共有多少种本质不同的涂色方案. (若两种方案可通过旋转互相得到,称作本质相同的方案) 解 ...

  8. @总结 - 12@ burnside引理与pólya定理

    目录 @0 - 参考资料@ @1 - 问题引入@ @2 - burnside引理@ @3 - pólya定理@ @4 - pólya定理的生成函数形式@ @0 - 参考资料@ 博客1 @1 - 问题引 ...

  9. Pólya 定理学习笔记

    在介绍\(Polya\) 定理前,先来介绍一下群论(大概了解一下就好): 群是满足下列要求的集合: 封闭性:即有一个操作使对于这个集合中每个元素操作完都使这个集合中的元素 结合律:即对于上面那个操作有 ...

随机推荐

  1. Ubuntu环境下安装Bochs

    首先说一下我的Ubuntu版本,敲命令 sudo lsb_release -a 就可以看到 No LSB modules are available. Distributor ID: Ubuntu D ...

  2. pat1089. Insert or Merge (25)

    1089. Insert or Merge (25) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Accor ...

  3. 温习SQL语句

    作为一名使用C#语言开发人员,就很难逃脱与SQLSERVER打交道,虽说我们是开发人员,但我想说的是,对数据库的操作还是应该时不时的拿出来温习一番.下面那就是我见过的一道有趣的SQL题目,与你们一起分 ...

  4. (开发)ESLint - 代码规范

    参考文档:http://eslint.cn/ ESLint 是在 ECMAScript/JavaScript 代码中识别和报告模式匹配的工具,它的目标是保证代码的一致性和避免错误.在许多方面,它和 J ...

  5. bootstrap导航栏的辛酸史

    昨天本来想完成test10的页面内容的,但是给老铁拉出去打麻将呢.不过还好昨天写了一些内容.现在奉上.不作更改. 今天完成的事情:(实现了test9的响应式导航栏的垂直平分和下拉列表的居中问题.) 我 ...

  6. ReactNative-JS 调用原生方法实例代码(转载)

    第一步首先创建ReactNative 模块类继承ReactContextBaseJavaModule package com.mixture;   import android.content.Con ...

  7. Struts2_HelloWorld_3

    struts.xml的配置 <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE struts ...

  8. centos7 & centos6 rrdcache

    cat > /etc/systemd/system/rrdcached.service << EOF [Unit] Description=Data caching daemon f ...

  9. TP5.1:将外部资源引入到框架中(css/js/font文件)

    为了让我们的框架形式变得更加好看,我们需要加入Bootstrap和Jq文件到框架中 1.通过Bootstrap和jq官网进行相关文件的下载 (1)Bootstrap下载地址:https://v3.bo ...

  10. BZOJ 2735: 世博会 主席树+切比雪夫距离转曼哈顿距离

    2735: 世博会 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 124  Solved: 51[Submit][Status][Discuss] D ...