题目描述

给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如G(10, 5)=5 mod 1 + 5 mod 2 + 5 mod 3 + 5 mod 4 + 5 mod 5 …… + 5 mod 10=0+1+2+1+0+5+5+5+5+5=29

输入输出格式

输入格式:

两个整数n k

输出格式:

答案

输入输出样例

输入样例#1: 复制

10 5
输出样例#1: 复制

29

说明

30%: n,k <= 1000

60%: n,k <= 10^6

100% n,k <= 10^9

代码:

 #include"bits/stdc++.h"
#define db double
#define ll long long
#define vec vector<ll>
#define Mt vector<vec>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
//#define rep(i, x, y) for(int i=x;i<=y;i++)
#define rep(i,n) for(int i=0;i<n;i++)
const int N = 1e5+;
const int mod = 1e9 + ;
const int MOD = mod - ;
const int inf = 0x3f3f3f3f;
const db PI = acos(-1.0);
const db eps = 1e-;
using namespace std;
ll n,k;
ll f[N];
int main()
{
cl(n),cl(k);
ll ans=n*k;
for(ll i=,j;i<=n;i=j+){
if(!(k/i)) j=n;
else j=min(k/(k/i),n);
ans-=(k/i)*(j-i+)*(j+i)/;
}
pl(ans);
return ;
}

[CQOI2007]余数求和 (分块+数学的更多相关文章

  1. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

  2. P2261 [CQOI2007]余数求和 【整除分块】

    一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$  ...

  3. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  4. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

  5. [Luogu 2261] CQOI2007 余数求和

    [Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...

  6. 题解 P2261【[CQOI2007]余数求和】

    P2261[[CQOI2007]余数求和] 蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了 虽然还看了一下自己之前的博客 题目要求: \[\sum_{i=1}^{n}{k \bmod i} \ ...

  7. BZOJ_1257_ [CQOI2007]余数之和sum_数学

    BZOJ_1257_ [CQOI2007]余数之和sum_数学 题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值. 分 ...

  8. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  9. [Luogu P2261] [CQOI2007]余数求和 (取模计算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...

随机推荐

  1. ASP.NET 4.5 尚未在 Web 服务器上注册。您需要手动将 Web 服务器配置为使用 ASP.NET 4.5,这样您的网站才能正确运行。

    系统换成Windows10安装VS2012打开项目总提示:vs2012 aps.NET 4.5尚未在web服务器上注册,您需要手动将Web服务器配置为使用ASP.Net 4.5,这样您的网站才可能正确 ...

  2. intellijidea课程 intellijidea神器使用技巧 3-4 alter+enter

    alter enter ==> 创建函数 fi() ==> alter enter

  3. Windows和Linux执行Java代码的不同方式

    一.Windows 下编译并执行 Java 字节码文件(类文件) 1.编译 Hello.java 源码文件: java -d . Hello.java 2.执行 Hello.class 字节码文件: ...

  4. [COM Interop学习小结]实现一个C#调用C++的示例

    最近在研究产品的架构代码,发现其中涉及到Com组件技术,即项目中的C# Project会通过Com接口来调用C++ Project中的方法,研究一下,实现一个小的例子,供自己学习. 一. 什么是COM ...

  5. 浅谈SQL Server中的事务日志(一)----事务日志的物理和逻辑构架

    简介 SQL Server中的事务日志无疑是SQL Server中最重要的部分之一.因为SQL SERVER利用事务日志来确保持久性(Durability)和事务回滚(Rollback).从而还部分确 ...

  6. SharePoint 栏的三种名字Filed :StaticName、 InternalName、 DisplayName

    SharePoint 的栏,有3个名字, StaticName InternalName  DisplayName. 当在第一次创建栏的时候,这3个名字一起进行创建,并且都一样. <FIELD  ...

  7. make知识

    makelist 语法 https://cmake.org/cmake/help/v3.10/manual/cmake-language.7.html CMakeLists.txt I am of t ...

  8. 常用mysql系统参数参考

    http://aaronsa.blog.51cto.com/5157083/1741481

  9. Vsftpd服务传输文件(转)

    本章节先通过介绍文件传输协议来帮助读者理解FTP协议的用处,安装vsftpd服务程序并逐条分析服务文件的配置参数. 完整演示vsftpd服务匿名访问模式.本地用户模式及虚拟用户模式的配置方法,介绍PA ...

  10. Android 编辑框(EditText)属性学习

    EditText的属性很多,这里介绍几个:android:hint="请输入数字!"//设置显示在空间上的提示信息android:numeric="integer&quo ...