concurrent.futures  —Launching parallel tasks    concurrent.futures模块同时提供了进程池和线程池,它是将来的使用趋势,同样我们之前学习的进程池Pool和threadpool模块也可以使用。

对进程池疑惑的可以参阅:32进程池与回调函数http://www.cnblogs.com/liluning/p/7445457.html

对threadpool模块疑惑的可以看我闲暇时写的一段代码:(因为本人也不了解这个模块,代码里写的也是自己想当然的,如有问题请自行查阅资料)

 基于threadpool猫眼爬虫

一、concurrent.futures模块

1、官方文档

https://docs.python.org/dev/library/concurrent.futures.html#module-concurrent.futures

2、ProcessPoolExecutor(进程池)与ThreadPoolExecutor(线程池)

(进程池类与线程池类的方法使用等各方面基本相同)

1)导入

from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor

2)创建

p = ProcessPoolExecutor(num)  #创建进程池
t = ThreadPoolExecutor(num) #创建线程池

3)参数

num:要创建的进程数或线程数,如果省略,进程数将默认使用cpu_count()的值,线程数将默认使用cpu_count()*5的值

4)主要方法

submit(fn, *args, **kwargs):在一个池工作进程中执行执行fn(args kwargs)执行,并返回一个表示可调用的执行的Future对象
map(func, *iterables, timeout=None, chunksize=1):
shutdown(wait=True):执行结束释放资源

3、应用

1)进程池

from concurrent.futures import ProcessPoolExecutor
import os,time
def task(n):
print('%s is running' %os.getpid())
time.sleep(2)
return n**2 if __name__ == '__main__':
p=ProcessPoolExecutor()
l=[]
start=time.time()
for i in range(10):
obj=p.submit(task,i)
l.append(obj)
p.shutdown()
print('='*30)
print([obj for obj in l])
print([obj.result() for obj in l])
print(time.time()-start)

2)线程池

from concurrent.futures import ThreadPoolExecutor
import threading
import os,time
def task(n):
print('%s:%s is running' %(threading.currentThread().getName(),os.getpid()))
time.sleep(2)
return n**2 if __name__ == '__main__':
p=ThreadPoolExecutor()
l=[]
start=time.time()
for i in range(10):
obj=p.submit(task,i)
l.append(obj)
p.shutdown()
print('='*30)
print([obj.result() for obj in l])
print(time.time()-start)

3)同步执行

from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
import os,time,random
def task(n):
print('%s is running' %os.getpid())
time.sleep(2)
return n**2 if __name__ == '__main__':
p=ProcessPoolExecutor()
start=time.time()
for i in range(10):
res=p.submit(task,i).result()
print(res)
print('='*30)
print(time.time()-start)

4、回调函数 

不懂回调函数的看本章节首部有链接

from concurrent.futures import ThreadPoolExecutor
import requests, os, time
from threading import currentThread
def get_page(url):
print('%s:<%s> is getting [%s]' %(currentThread().getName(),os.getpid(),url))
response=requests.get(url)
time.sleep(2)
return {'url':url,'text':response.text}
def parse_page(res):
res=res.result() #注意值
print('%s:<%s> parse [%s]' %(currentThread().getName(),os.getpid(),res['url']))
with open('db.txt','a') as f:
parse_res='url:%s size:%s\n' %(res['url'],len(res['text']))
f.write(parse_res)
if __name__ == '__main__':
p=ThreadPoolExecutor()
urls = [
'https://www.baidu.com',
'http://www.openstack.org',
'https://www.python.org',
'http://www.sina.com.cn/'
] for url in urls:
p.submit(get_page, url).add_done_callback(parse_page)
#add_done_callback()回调函数
p.shutdown()
print('主',os.getpid())

5、map方法

map有疑惑可以阅览:19、内置函数和匿名函数http://www.cnblogs.com/liluning/p/7280832.html

from concurrent.futures import ProcessPoolExecutor
import os,time
def task(n):
print('%s is running' %os.getpid())
time.sleep(2)
return n**2 if __name__ == '__main__':
p=ProcessPoolExecutor()
obj=p.map(task,range(10))
p.shutdown()
print('='*30)
print(list(obj))

二、协程概念

1、定义

是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。

2、注意

1)python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)

2)单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)

3、优点

1) 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级

2) 单线程内就可以实现并发的效果,最大限度地利用cpu

4、缺点

1) 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程

2) 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

5、总结

1)必须在只有一个单线程里实现并发

2)修改共享数据不需加锁

3)用户程序里自己保存多个控制流的上下文栈

附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))


三、greenlet模块

如果我们在单个线程内有20个任务,要想实现在多个任务之间切换,使用yield生成器的方式过于麻烦(需要先得到初始化一次的生成器,然后再调用send。。。非常麻烦),而使用greenlet模块可以非常简单地实现这20个任务直接的切换

生成器:18、迭代器和生成器http://www.cnblogs.com/liluning/p/7274862.html

1、安装

pip3 install greenlet

2、使用

from greenlet import greenlet

def eat(name):
print('%s eat 1' %name)
g2.switch('egon')
print('%s eat 2' %name)
g2.switch()
def play(name):
print('%s play 1' %name)
g1.switch()
print('%s play 2' %name) g1=greenlet(eat)
g2=greenlet(play) g1.switch('egon')#可以在第一次switch时传入参数,以后都不需要

3、单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度

 

单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2。。。。如此,才能提高效率,这就用到了Gevent模块。


四、Gevent模块

1、安装

pip3 install gevent

Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

2、用法

g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的

g2=gevent.spawn(func2)

g1.join() #等待g1结束

g2.join() #等待g2结束

#或者上述两步合作一步:gevent.joinall([g1,g2])

g1.value#拿到func1的返回值

3、遇到IO阻塞时会自动切换任务

 

上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头

 

4、Gevent的同步与异步

 

5、Gevent实现爬虫

from gevent import monkey;monkey.patch_all()
import gevent
import requests
import time def get_page(url):
print('GET: %s' %url)
response=requests.get(url)
if response.status_code == 200:
print('%d bytes received from %s' %(len(response.text),url)) start_time=time.time()
g1=gevent.spawn(get_page, 'https://www.python.org/')
g2=gevent.spawn(get_page, 'https://www.yahoo.com/')
g3=gevent.spawn(get_page, 'https://github.com/')
gevent.joinall([g1,g2,g3])
stop_time=time.time()
print('run time is %s' %(stop_time-start_time))

6、gevent实现单线程下的socket并发

通过gevent实现单线程下的socket并发(from gevent import monkey;monkey.patch_all()一定要放到导入socket模块之前,否则gevent无法识别socket的阻塞)

 服务端
 客户端

7、多协程发送多个客户端

 服务端
 客户端

concurrent.futures模块与协程的更多相关文章

  1. 45、concurrent.futures模块与协程

    concurrent.futures  —Launching parallel tasks    concurrent.futures模块同时提供了进程池和线程池,它是将来的使用趋势,同样我们之前学习 ...

  2. 线程池、进程池(concurrent.futures模块)和协程

    一.线程池 1.concurrent.futures模块 介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 Pro ...

  3. 35、concurrent.futures模块与协程

    concurrent.futures  —Launching parallel tasks    concurrent.futures模块同时提供了进程池和线程池,它是将来的使用趋势,同样我们之前学习 ...

  4. concurrent.futures模块(进程池/线程池)

    需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...

  5. Python之网络编程之concurrent.futures模块

    需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...

  6. 使用concurrent.futures模块中的线程池与进程池

    使用concurrent.futures模块中的线程池与进程池 线程池与进程池 以线程池举例,系统使用多线程方式运行时,会产生大量的线程创建与销毁,创建与销毁必定会带来一定的消耗,甚至导致系统资源的崩 ...

  7. Python之线程 3 - 信号量、事件、线程队列与concurrent.futures模块

    一 信号量 二 事件 三 条件Condition 四 定时器(了解) 五 线程队列 六 标准模块-concurrent.futures 基本方法 ThreadPoolExecutor的简单使用 Pro ...

  8. Python并发编程之线程池/进程池--concurrent.futures模块

    一.关于concurrent.futures模块 Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/ ...

  9. 《转载》Python并发编程之线程池/进程池--concurrent.futures模块

    本文转载自Python并发编程之线程池/进程池--concurrent.futures模块 一.关于concurrent.futures模块 Python标准库为我们提供了threading和mult ...

随机推荐

  1. 【推荐系统】Netflix 推荐系统:第二部分

    原文链接:http://techblog.netflix.com/2012/06/netflix-recommendations-beyond-5-stars.htm 在 blog 的第一部分,我们详 ...

  2. netstat查看网络信息

    Netstat 命令用于显示各种网络相关信息,如网络连接,路由表,接口状态 (Interface Statistics),masquerade 连接,多播成员 (Multicast Membershi ...

  3. Spring开发环境搭建

    ----------------siwuxie095 Spring 是运行在 Java 环境下的开发框架,因此在开发前需要 准备以下相关软件: JDK 7 或者以上版本 Eclipse 4 或以上版本 ...

  4. C#中索引器Indexer的学习使用

    索引器 顾名思义,是用来索引的,那么C#中索引器是用来索引什么的呢 首先我们知道,C#中的数组是本身就可以索引的,那么C#中的类和结构呢,类和结构的实例是无法索引的,如果我们想让C#中类或者结构的实例 ...

  5. ASP.NET WebForm中JavaScript修改了页面上Label的值,如何在后台代码中获取

    在用ASP.NET WebForm开发一个项目时,遇到如下的一个情况 页面上有一个Textbox控件,还有2个Label 控件. 当Textbox控件中的值更改时,两个Label控件上的值做相应的更改 ...

  6. ES Docs-1:Installation Elasticsearch-2.3.1

    installation Elasticsearch requires at least Java 7. Specifically as of this writing, it is recommen ...

  7. request.form()和request()的区别

    Request.Form:获取以POST方式提交的数据(接收Form提交来的数据):Request.QueryString:获取地址栏参数(以GET方式提交的数据)Request:包含以上两种方式(优 ...

  8. Android APK反编译技巧全讲解

    导言:在我们安卓开发当中,我们不仅需要掌握基础的开发技能,也需要掌握软件的安全技能,这样才可以让我们的软件能够成为一款能够真正可以进行发布的软件,同时也可以让自己的核心技术不会被别人所盗取. 首先我们 ...

  9. Master 接受其它组件的注册

    Master对其它组件注册的处理: Master接受注册的对象主要就是: Driver.Application.Worker.注意:Executor 不会向 Master 注册,它是向 Driver ...

  10. Cogs 1264. [NOIP2012] 开车旅行(70分 暴力)

    1264. [NOIP2012] 开车旅行 ★★☆   输入文件:drive.in   输出文件:drive.out   简单对比时间限制:2 s   内存限制:128 MB [题目描述] 小A 和小 ...