concurrent.futures  —Launching parallel tasks    concurrent.futures模块同时提供了进程池和线程池,它是将来的使用趋势,同样我们之前学习的进程池Pool和threadpool模块也可以使用。

对进程池疑惑的可以参阅:32进程池与回调函数http://www.cnblogs.com/liluning/p/7445457.html

对threadpool模块疑惑的可以看我闲暇时写的一段代码:(因为本人也不了解这个模块,代码里写的也是自己想当然的,如有问题请自行查阅资料)

 基于threadpool猫眼爬虫

一、concurrent.futures模块

1、官方文档

https://docs.python.org/dev/library/concurrent.futures.html#module-concurrent.futures

2、ProcessPoolExecutor(进程池)与ThreadPoolExecutor(线程池)

(进程池类与线程池类的方法使用等各方面基本相同)

1)导入

from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor

2)创建

p = ProcessPoolExecutor(num)  #创建进程池
t = ThreadPoolExecutor(num) #创建线程池

3)参数

num:要创建的进程数或线程数,如果省略,进程数将默认使用cpu_count()的值,线程数将默认使用cpu_count()*5的值

4)主要方法

submit(fn, *args, **kwargs):在一个池工作进程中执行执行fn(args kwargs)执行,并返回一个表示可调用的执行的Future对象
map(func, *iterables, timeout=None, chunksize=1):
shutdown(wait=True):执行结束释放资源

3、应用

1)进程池

from concurrent.futures import ProcessPoolExecutor
import os,time
def task(n):
print('%s is running' %os.getpid())
time.sleep(2)
return n**2 if __name__ == '__main__':
p=ProcessPoolExecutor()
l=[]
start=time.time()
for i in range(10):
obj=p.submit(task,i)
l.append(obj)
p.shutdown()
print('='*30)
print([obj for obj in l])
print([obj.result() for obj in l])
print(time.time()-start)

2)线程池

from concurrent.futures import ThreadPoolExecutor
import threading
import os,time
def task(n):
print('%s:%s is running' %(threading.currentThread().getName(),os.getpid()))
time.sleep(2)
return n**2 if __name__ == '__main__':
p=ThreadPoolExecutor()
l=[]
start=time.time()
for i in range(10):
obj=p.submit(task,i)
l.append(obj)
p.shutdown()
print('='*30)
print([obj.result() for obj in l])
print(time.time()-start)

3)同步执行

from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
import os,time,random
def task(n):
print('%s is running' %os.getpid())
time.sleep(2)
return n**2 if __name__ == '__main__':
p=ProcessPoolExecutor()
start=time.time()
for i in range(10):
res=p.submit(task,i).result()
print(res)
print('='*30)
print(time.time()-start)

4、回调函数 

不懂回调函数的看本章节首部有链接

from concurrent.futures import ThreadPoolExecutor
import requests, os, time
from threading import currentThread
def get_page(url):
print('%s:<%s> is getting [%s]' %(currentThread().getName(),os.getpid(),url))
response=requests.get(url)
time.sleep(2)
return {'url':url,'text':response.text}
def parse_page(res):
res=res.result() #注意值
print('%s:<%s> parse [%s]' %(currentThread().getName(),os.getpid(),res['url']))
with open('db.txt','a') as f:
parse_res='url:%s size:%s\n' %(res['url'],len(res['text']))
f.write(parse_res)
if __name__ == '__main__':
p=ThreadPoolExecutor()
urls = [
'https://www.baidu.com',
'http://www.openstack.org',
'https://www.python.org',
'http://www.sina.com.cn/'
] for url in urls:
p.submit(get_page, url).add_done_callback(parse_page)
#add_done_callback()回调函数
p.shutdown()
print('主',os.getpid())

5、map方法

map有疑惑可以阅览:19、内置函数和匿名函数http://www.cnblogs.com/liluning/p/7280832.html

from concurrent.futures import ProcessPoolExecutor
import os,time
def task(n):
print('%s is running' %os.getpid())
time.sleep(2)
return n**2 if __name__ == '__main__':
p=ProcessPoolExecutor()
obj=p.map(task,range(10))
p.shutdown()
print('='*30)
print(list(obj))

二、协程概念

1、定义

是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。

2、注意

1)python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)

2)单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)

3、优点

1) 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级

2) 单线程内就可以实现并发的效果,最大限度地利用cpu

4、缺点

1) 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程

2) 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

5、总结

1)必须在只有一个单线程里实现并发

2)修改共享数据不需加锁

3)用户程序里自己保存多个控制流的上下文栈

附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))


三、greenlet模块

如果我们在单个线程内有20个任务,要想实现在多个任务之间切换,使用yield生成器的方式过于麻烦(需要先得到初始化一次的生成器,然后再调用send。。。非常麻烦),而使用greenlet模块可以非常简单地实现这20个任务直接的切换

生成器:18、迭代器和生成器http://www.cnblogs.com/liluning/p/7274862.html

1、安装

pip3 install greenlet

2、使用

from greenlet import greenlet

def eat(name):
print('%s eat 1' %name)
g2.switch('egon')
print('%s eat 2' %name)
g2.switch()
def play(name):
print('%s play 1' %name)
g1.switch()
print('%s play 2' %name) g1=greenlet(eat)
g2=greenlet(play) g1.switch('egon')#可以在第一次switch时传入参数,以后都不需要

3、单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度

 

单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2。。。。如此,才能提高效率,这就用到了Gevent模块。


四、Gevent模块

1、安装

pip3 install gevent

Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

2、用法

g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的

g2=gevent.spawn(func2)

g1.join() #等待g1结束

g2.join() #等待g2结束

#或者上述两步合作一步:gevent.joinall([g1,g2])

g1.value#拿到func1的返回值

3、遇到IO阻塞时会自动切换任务

 

上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头

 

4、Gevent的同步与异步

 

5、Gevent实现爬虫

from gevent import monkey;monkey.patch_all()
import gevent
import requests
import time def get_page(url):
print('GET: %s' %url)
response=requests.get(url)
if response.status_code == 200:
print('%d bytes received from %s' %(len(response.text),url)) start_time=time.time()
g1=gevent.spawn(get_page, 'https://www.python.org/')
g2=gevent.spawn(get_page, 'https://www.yahoo.com/')
g3=gevent.spawn(get_page, 'https://github.com/')
gevent.joinall([g1,g2,g3])
stop_time=time.time()
print('run time is %s' %(stop_time-start_time))

6、gevent实现单线程下的socket并发

通过gevent实现单线程下的socket并发(from gevent import monkey;monkey.patch_all()一定要放到导入socket模块之前,否则gevent无法识别socket的阻塞)

 服务端
 客户端

7、多协程发送多个客户端

 服务端
 客户端

concurrent.futures模块与协程的更多相关文章

  1. 45、concurrent.futures模块与协程

    concurrent.futures  —Launching parallel tasks    concurrent.futures模块同时提供了进程池和线程池,它是将来的使用趋势,同样我们之前学习 ...

  2. 线程池、进程池(concurrent.futures模块)和协程

    一.线程池 1.concurrent.futures模块 介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 Pro ...

  3. 35、concurrent.futures模块与协程

    concurrent.futures  —Launching parallel tasks    concurrent.futures模块同时提供了进程池和线程池,它是将来的使用趋势,同样我们之前学习 ...

  4. concurrent.futures模块(进程池/线程池)

    需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...

  5. Python之网络编程之concurrent.futures模块

    需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...

  6. 使用concurrent.futures模块中的线程池与进程池

    使用concurrent.futures模块中的线程池与进程池 线程池与进程池 以线程池举例,系统使用多线程方式运行时,会产生大量的线程创建与销毁,创建与销毁必定会带来一定的消耗,甚至导致系统资源的崩 ...

  7. Python之线程 3 - 信号量、事件、线程队列与concurrent.futures模块

    一 信号量 二 事件 三 条件Condition 四 定时器(了解) 五 线程队列 六 标准模块-concurrent.futures 基本方法 ThreadPoolExecutor的简单使用 Pro ...

  8. Python并发编程之线程池/进程池--concurrent.futures模块

    一.关于concurrent.futures模块 Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/ ...

  9. 《转载》Python并发编程之线程池/进程池--concurrent.futures模块

    本文转载自Python并发编程之线程池/进程池--concurrent.futures模块 一.关于concurrent.futures模块 Python标准库为我们提供了threading和mult ...

随机推荐

  1. RN控件之TextInput

    /** * Sample React Native App * https://github.com/facebook/react-native */ 'use strict'; import Rea ...

  2. viewstate的基本用法

    转自:http://www.cnblogs.com/ooip/p/4743536.html 在web窗体将控件属性设置为runat=server时,这个控件会被添加一个隐藏属性_ViewState,_ ...

  3. sklearn正规化(Normalization或者scale)

    from sklearn import preprocessing import numpy as np a = np.array([[10,2.7,3.6],[-100,5,-2],[120,20, ...

  4. win7 64位安装nokia 920驱动

    折腾了很长时间,终于安装成功,先将一些步骤记下来,此方法适用于哪些网上常规方法无法安装驱动的: 需要注意920不要连到电脑上的USB3.0接口,相关文件下载地址:http://pan.baidu.co ...

  5. c#入门学习-Action和Func的使用

    我的理解就是:Action和Func就是官方声明好的代理using System; namespace funcActionDemo{    class MainClass    {        p ...

  6. Software - 创建程序打包项目

    通常的步骤 准备一个 Visual Studio Installer 的项目模板 利用该模板,在解决方案中新建一个 Visual Studio Installer 项目 设置项目属性,配置文件系统 生 ...

  7. C#事件2

    今天又来说一下C#中的事件,为什么会有这个又呢?一个是因为以前写过一篇关于事件的东西,二来呢是因为感觉接口这个东西完全可以替换委托来写事件.因为这两个方面的原因,重新过了一遍C#中的事件. 事件这个东 ...

  8. CSS类名命名规则

    CSS样式命名 说明 网页公共命名 #wrapper 页面外围控制整体布局宽度 #container或#content 容器,用于最外层 #layout 布局 #head, #header 页头部分 ...

  9. Linux ubi子系统原理分析

    本文思维导图总纲: 综述 关于ubi子系统,早已有比较正式的介绍,也提供非常形象的介绍ubi子系统ppt 国内的前辈 alloysystem 不辞辛劳为我们提供了部分正式介绍的中文译文,以及找不到原文 ...

  10. GoWeb开发_Iris框架讲解(三):路由功能处理方式

    Context概念 Context是iris框架中的一个路由上下文对象,在iris框架中的源码路径定义为:{$goPath}\github.com\kataras\iris\context\conte ...