原题链接 基础数论中很经典的一道题

题意

给出了σ(n)的计算公式,让你找出整数1~n中有多少对应σ(n)的值是偶数.

思路

观察σ(n)的公式发现,每一个乘项都是 (piei+1 - 1) / (p- 1) 这样,类比等比数列前n项和公式:

(piei+1 - 1) / (p- 1) = (1 - piei+1) / (1 - pi) = 1 + pi + pi+ ... + piei

即 σ(n) = ∏(1 + pi + pi+ ... + piei)

题目要找σ(n)是偶数的值,我们进一步思考如何保证σ(n)是偶数,能否通过上面得到的乘项来确定σ(n)的奇偶性?

我们首先知道奇数运算有一个性质: 做乘法运算时,只有奇数乘奇数才可以的到奇数.

显然利用奇数来讨论会更加容易,我们可以先找到使σ(n)为奇数的情况数,再用总数减去即可得到偶数的情况数.

利用上面的性质可知,若σ(n)是奇数,则每一个乘项(1 + pi + pi+ ... + piei)必须全为奇数.

因此可做下面的讨论:

从质因子p入手,我们知道任何除2以外的质数都是奇数.

1. 若质因子中不存在 pi = 2,则 pi必为奇数,pi的幂也必为奇数,

 要使(1 + pi + pi+ ... + piei)为奇数,需保证ei为偶数(确保偶数个奇数项相加,再加1及为奇数)

又因为n = p1e1 * p2e2 * ... * pkekei是偶数,则n必为一个完全平方数.

2. 若质因子中存在一个 pi = 2,

 则pi = 2对应的乘项必为奇数,无论ek是奇数还是偶数.

然后需保证其他所有乘项为奇数.

 n = p1e1 * p2e2 * ... * pkek

若pi = 2对应ek为偶数,则n必为一个完全平方数.

若pi = 2对应ek为奇数,那么n再除以一个2后,n必为完全平方数.

综合以上两种情况后,我们只需统计1~n中所有的完全平方数以及除以2以后是完全平方数的数之和,再用n减去即可得到最终答案.

代码

 #include <iostream>
#include <cmath>
using namespace std;
typedef long long ll;
int main()
{
int t;
cin >> t;
for (int i = ; i <= t; i++) {
ll n;
cin >> n;
ll ans = n;
ans -= (ll)sqrt(n) + (ll)sqrt(n / 2.0);
printf("Case %d: %lld\n", i, ans);
}
return ;
}

LightOJ 1336 - Sigma Function的更多相关文章

  1. LightOJ - 1336 - Sigma Function(质数分解)

    链接: https://vjudge.net/problem/LightOJ-1336 题意: Sigma function is an interesting function in Number ...

  2. LightOJ 1336 Sigma Function 算数基本定理

    题目大意:f(n)为n的因子和,给出 n 求 1~n 中f(n)为偶数的个数. 题目思路:算数基本定理: n=p1^e1*p2^e1 …… pn^en (p为素数): f(n)=(1+p1+p1^2+ ...

  3. LightOJ 1336 Sigma Function(数论 整数拆分推论)

    --->题意:给一个函数的定义,F(n)代表n的所有约数之和,并且给出了整数拆分公式以及F(n)的计算方法,对于一个给出的N让我们求1 - N之间有多少个数满足F(x)为偶数的情况,输出这个数. ...

  4. LightOJ - 1336 Sigma Function(约数和+整数拆分)

    题干中给出函数公式: 其中pi为n的每个素因数,ei为其个数.设该函数为F(x),其意义为x的约数之和.问在1-n中有多少x,令F(x)为偶数. 分析:设f(p)为(p^(e+1)-1)/(p-1). ...

  5. LightOJ 13361336 - Sigma Function (找规律 + 唯一分解定理)

    http://lightoj.com/volume_showproblem.php?problem=1336 Sigma Function Time Limit:2000MS     Memory L ...

  6. 1336 - Sigma Function

    1336 - Sigma Function   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB S ...

  7. light oj 1336 sigma function

    常用的化简方法(高中就常用了):     p^(e+1)-1/p-1=             [ p^(e+1) -p + (p-1) ]/ (p-1) = p*(p^e-1)/(p-1) + 1  ...

  8. LightOJ1336 Sigma Function —— 质因子分解、约数和为偶数

    题目链接:https://vjudge.net/problem/LightOJ-1336 1336 - Sigma Function    PDF (English) Statistics Forum ...

  9. 1336 - Sigma Functio

    1336 - Sigma Function Sigma function is an interesting function in Number Theory. It is denoted by t ...

随机推荐

  1. visual studio tools for unity代码提示快捷键

    visual studio tools for unity代码提示快捷键  ctrl+ shift +q

  2. User-Agent 及其构造

    url = ... user_agent = ... headers = {'User-Agent' : user_agent} req = requests.request(url=url, hea ...

  3. AtCoder Grand Contest 014 题解

    A - Cookie Exchanges 模拟 Problem Statement Takahashi, Aoki and Snuke love cookies. They have A, B and ...

  4. [转]unity3d中创建双面材质

    在其它三维软件中设置好的双面材质导入到unity3d中就失去了效果,不过我们可以通过自定义材质来在unity3d中实现双面材质的效果.步骤如下:1.在资源库中新建一新shader:代码如下: Shad ...

  5. LIBCMTD.lib(wincrt0.obj) : error LNK2019: 无法解析的外部符号 _WinMain@16,该符号在函数 ___tmainCRTStartup 中被引用

    无法解析的外部符号 _WinMain@16,该符号在函数 ___tmainCRTStartup 中被引用 出现原因: 连接程序在负责连接可执行程序时,选择相应的c/c++运行时启动函数.如果设定了/s ...

  6. JAVA基础知识(12)-----同步

    好处:解决了线程安全问题.弊端:相对降低性能,因为判断锁需要消耗资源,产生了死锁.定义同步是有前提的:1,必须要有两个或者两个以上的线程,才需要同步.2,多个线程必须保证使用的是同一个锁. 同步的第二 ...

  7. ES6学习之Proxy

    定义:“代理器”,用于修改某些操作的默认行为,等同于在语言层面做出修改,所以属于一种“元编程”(meta programming),即对编程语言进行编程.可以对外界的访问进行过滤和改写. 语法: va ...

  8. phpstorm断点调试 php.ini 文件中 Xdebug 配置

    [XDebug]xdebug.profiler_output_dir="D:\phpStudy\tmp\xdebug"xdebug.trace_output_dir="D ...

  9. go 语言 基础 类型(1)

    变量 使用关键字 var定义变量,自动初始化为0值.如果提供初始化值,可省略变量类型,由编译器自动推断. 在函数内部可以使用 := 方式定义变量 func main() { x := 123 } 可一 ...

  10. 第三波精品Android源码袭来!免费下载

    今天又汇总了一些源码供大家免费下载学习! 1.Android实现NewQuickAction快捷菜单NewQuickAction能根据点击事件发生的坐标来显示一个快捷菜单,比如点击位置在靠近底部,则弹 ...