原题链接 基础数论中很经典的一道题

题意

给出了σ(n)的计算公式,让你找出整数1~n中有多少对应σ(n)的值是偶数.

思路

观察σ(n)的公式发现,每一个乘项都是 (piei+1 - 1) / (p- 1) 这样,类比等比数列前n项和公式:

(piei+1 - 1) / (p- 1) = (1 - piei+1) / (1 - pi) = 1 + pi + pi+ ... + piei

即 σ(n) = ∏(1 + pi + pi+ ... + piei)

题目要找σ(n)是偶数的值,我们进一步思考如何保证σ(n)是偶数,能否通过上面得到的乘项来确定σ(n)的奇偶性?

我们首先知道奇数运算有一个性质: 做乘法运算时,只有奇数乘奇数才可以的到奇数.

显然利用奇数来讨论会更加容易,我们可以先找到使σ(n)为奇数的情况数,再用总数减去即可得到偶数的情况数.

利用上面的性质可知,若σ(n)是奇数,则每一个乘项(1 + pi + pi+ ... + piei)必须全为奇数.

因此可做下面的讨论:

从质因子p入手,我们知道任何除2以外的质数都是奇数.

1. 若质因子中不存在 pi = 2,则 pi必为奇数,pi的幂也必为奇数,

 要使(1 + pi + pi+ ... + piei)为奇数,需保证ei为偶数(确保偶数个奇数项相加,再加1及为奇数)

又因为n = p1e1 * p2e2 * ... * pkekei是偶数,则n必为一个完全平方数.

2. 若质因子中存在一个 pi = 2,

 则pi = 2对应的乘项必为奇数,无论ek是奇数还是偶数.

然后需保证其他所有乘项为奇数.

 n = p1e1 * p2e2 * ... * pkek

若pi = 2对应ek为偶数,则n必为一个完全平方数.

若pi = 2对应ek为奇数,那么n再除以一个2后,n必为完全平方数.

综合以上两种情况后,我们只需统计1~n中所有的完全平方数以及除以2以后是完全平方数的数之和,再用n减去即可得到最终答案.

代码

 #include <iostream>
#include <cmath>
using namespace std;
typedef long long ll;
int main()
{
int t;
cin >> t;
for (int i = ; i <= t; i++) {
ll n;
cin >> n;
ll ans = n;
ans -= (ll)sqrt(n) + (ll)sqrt(n / 2.0);
printf("Case %d: %lld\n", i, ans);
}
return ;
}

LightOJ 1336 - Sigma Function的更多相关文章

  1. LightOJ - 1336 - Sigma Function(质数分解)

    链接: https://vjudge.net/problem/LightOJ-1336 题意: Sigma function is an interesting function in Number ...

  2. LightOJ 1336 Sigma Function 算数基本定理

    题目大意:f(n)为n的因子和,给出 n 求 1~n 中f(n)为偶数的个数. 题目思路:算数基本定理: n=p1^e1*p2^e1 …… pn^en (p为素数): f(n)=(1+p1+p1^2+ ...

  3. LightOJ 1336 Sigma Function(数论 整数拆分推论)

    --->题意:给一个函数的定义,F(n)代表n的所有约数之和,并且给出了整数拆分公式以及F(n)的计算方法,对于一个给出的N让我们求1 - N之间有多少个数满足F(x)为偶数的情况,输出这个数. ...

  4. LightOJ - 1336 Sigma Function(约数和+整数拆分)

    题干中给出函数公式: 其中pi为n的每个素因数,ei为其个数.设该函数为F(x),其意义为x的约数之和.问在1-n中有多少x,令F(x)为偶数. 分析:设f(p)为(p^(e+1)-1)/(p-1). ...

  5. LightOJ 13361336 - Sigma Function (找规律 + 唯一分解定理)

    http://lightoj.com/volume_showproblem.php?problem=1336 Sigma Function Time Limit:2000MS     Memory L ...

  6. 1336 - Sigma Function

    1336 - Sigma Function   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB S ...

  7. light oj 1336 sigma function

    常用的化简方法(高中就常用了):     p^(e+1)-1/p-1=             [ p^(e+1) -p + (p-1) ]/ (p-1) = p*(p^e-1)/(p-1) + 1  ...

  8. LightOJ1336 Sigma Function —— 质因子分解、约数和为偶数

    题目链接:https://vjudge.net/problem/LightOJ-1336 1336 - Sigma Function    PDF (English) Statistics Forum ...

  9. 1336 - Sigma Functio

    1336 - Sigma Function Sigma function is an interesting function in Number Theory. It is denoted by t ...

随机推荐

  1. Nginx+ffmpeg的HLS开源服务器搭建配置及开发详

    本文概述: 至目前为止,HLS 是移动平台上非常重要并十分流行的流媒体传输协议.做移动平台的流媒体开发,不知道它不掌握它 ,真是一大遗憾.而HLS的平台搭建有一定的难度,本文针对对该方向有一定了解的朋 ...

  2. Qt Quick中的信号与槽

    在QML中,在Qt Quick中,要想妥善地处理各种事件,肯定离不开信号与槽,本博的主要内容就是整理Qt 中的信号与槽的内容. 1. 链接QML类型的已知信号 QML中已有类型定义的信号分为两类:一类 ...

  3. ACM学习历程—UESTC 1217 The Battle of Chibi(递推 && 树状数组)(2015CCPC C)

    题目链接:http://acm.uestc.edu.cn/#/problem/show/1217 题目大意就是求一个序列里面长度为m的递增子序列的个数. 首先可以列出一个递推式p(len, i) =  ...

  4. Azure PIP (Instance Level Public IP)

    微软的Azure平台已经支持Instance Level Public IP功能.当有复杂协议的情况下,需要开启多个端口的情况下,可以考虑开启PIP功能. 先介绍几个概念: VIP – virtual ...

  5. Linux编程里getopt_long_only函数用法详解

    在程序中难免需要使用命令行选项,可以选择自己解析命令行选项,但是有现成的,何必再造轮子.下面介绍使用getopt_long_only和getopt_long(两者用法差不多)解析命令行选项. 程序中主 ...

  6. ES6学习之let和const

    1.let 基本用法:let声明的变量,只在let命令所在的代码块内有效 { let a = 1; var b = 2; } console.log(a) //a is not defined con ...

  7. Debain install Jupyter

    1. install Anaconda https://www.anaconda.com/download/#linux 2. config jupyter $ ipython from notebo ...

  8. mysql-日志种类

    MySQL有以下几种日志:  1,错误日志:记录启动.运行或停止时出现的问题,一般也会记录警告信息.  2,一般查询日志:记录建立的客户端连接和执行的语句.  3,慢查询日志:记录所有执行时间超过lo ...

  9. Angular08 依赖注入

    1 angular应用中依赖注入的工作原理 技巧01:在模块级别进行注册时所有在应用级别的组件都可以使用,因为主模块会导入其他模块,所以在模块中注入就相当于在主模块进行注入操作:懒加载的模块除外 技巧 ...

  10. 具体问题:3、hibernate跟Mybatis/ ibatis 的区别,为什么选择?

    第一章     Hibernate与MyBatis Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分. Mybatis 是另外一种优秀 ...