One day I was shopping in the supermarket. There was a cashier counting coins seriously when a little kid running and singing "门前大桥下游过一群鸭,快来快来 数一数,二四六七八". And then the cashier put the counted coins back morosely and count again... 
Hello Kiki is such a lovely girl that she loves doing counting in a different way. For example, when she is counting X coins, she count them N times. Each time she divide the coins into several same sized groups and write down the group size Mi and the number of the remaining coins Ai on her note. 
One day Kiki's father found her note and he wanted to know how much coins Kiki was counting.

InputThe first line is T indicating the number of test cases. 
Each case contains N on the first line, Mi(1 <= i <= N) on the second line, and corresponding Ai(1 <= i <= N) on the third line. 
All numbers in the input and output are integers. 
1 <= T <= 100, 1 <= N <= 6, 1 <= Mi <= 50, 0 <= Ai < MiOutputFor each case output the least positive integer X which Kiki was counting in the sample output format. If there is no solution then output -1. 
Sample Input

2
2
14 57
5 56
5
19 54 40 24 80
11 2 36 20 76

Sample Output

Case 1: 341
Case 2: 5996

题意:

把硬币mi mi个分,余下ai个。现在小kiki的baba想知道小kiki收集了多少硬币;

由于取余的时候并没有说Mod之间互质,所以不能用剩余定理。要用一次线性同余方程组来解决。

第一次做,抄的别人的。。。。数学太渣。

#include<cstdio>
#include<string>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<map>
#include<vector>
#define LL long long
using namespace std;
LL m[],r[];
void ex_gcd(LL a,LL b,LL &d,LL &x,LL &y)
{
if(b==){ x=;y=;d=a;return ;}
ex_gcd(b,a%b,d,y,x); y-=x*(a/b);
}
LL gcd(LL a,LL b)
{
return b==?a:gcd(b,a%b);
}
LL ex_CRT(int n)
{
LL a,b,c,c1,c2,x,y,d,N;
a=m[]; c1=r[];
for(int i=;i<=n;i++){
b=m[i];c2=r[i]; c=c2-c1;
ex_gcd(a,b,d,x,y);
if(c%d) return -;
LL b1=b/d;
x=((c/d*x)%b1+b1)%b1;
c1=a*x+c1; a=a*b1;
}
if(c1==){
c1=; for(int i=;i<=n;i++) c1=c1*m[i]/gcd(c1,m[i]);
}
return c1;
}
int main()
{
int T,n,Case=;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%lld",&m[i]);
for(int i=;i<=n;i++) scanf("%lld",&r[i]);
printf("Case %d: %lld\n",++Case,ex_CRT(n));
}
return ;
}

HDU3579Hello Kiki(中国剩余定理)(不互质的情况)的更多相关文章

  1. Hello Kiki(中国剩余定理——不互质的情况)

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  2. 中国剩余定理模数互质的情况模板(poj1006

    http://poj.org/problem?id=1006 #include <iostream> #include <cstdio> #include <queue& ...

  3. POJ 1006 Biorhythms --中国剩余定理(互质的)

    Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 103539   Accepted: 32012 Des ...

  4. poj 2981 Strange Way to Express Integers (中国剩余定理不互质)

    http://poj.org/problem?id=2891 Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 13 ...

  5. X问题(中国剩余定理+不互质版应用)hdu1573

    X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. hdu X问题 (中国剩余定理不互质)

    http://acm.hdu.edu.cn/showproblem.php?pid=1573 X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory ...

  7. HDU 5768 Lucky7 容斥原理+中国剩余定理(互质)

    分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的 ...

  8. Strange Way to Express Integers(中国剩余定理+不互质)

    Strange Way to Express Integers Time Limit:1000MS Memory Limit:131072KB 64bit IO Format:%I64d & ...

  9. 中国剩余定理模数不互质的情况(poj 2891

    中国剩余定理模数不互质的情况主要有一个ax+by==k*gcd(a,b),注意一下倍数情况和最小 https://vjudge.net/problem/POJ-2891 #include <io ...

随机推荐

  1. 九度OJ 1326:Waiting in Line(排队) (模拟)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:220 解决:64 题目描述: Suppose a bank has N windows open for service. There is ...

  2. git生成public key

    1 配置user name和email git config --global user.name "xxx" git config --global user.email &qu ...

  3. 不怕慢 就怕站 不怕单线程 不怕 裸露ip

    import sys import os import requests import threading from time import sleep from bs4 import Beautif ...

  4. Dubbo,ZooKeeper,Redis,FastDFS,ActiveMQ,Keepalived,Nginx,Hudson

    获取[下载地址]   QQ: 313596790   [免费支持更新] 三大数据库 mysql  oracle  sqlsever   更专业.更强悍.适合不同用户群体 [新录针对本系统的视频教程,手 ...

  5. require.js vs browserify

    require.js vs browserify require.js是模块加载器:browserify是预编译工具 require.js遵循的是AMD规范:browserify遵循的是CommonJ ...

  6. 说说JSON和JSONP,也许你会豁然开朗,含jQuery用例(转载)

     前言: 说到AJAX就会不可避免的面临两个问题,第一个是AJAX以何种格式来交换数据?第二个是跨域的需求如何解决?这两个问题目前都有不同的解决方案,比如数据可以用自定义字符串或者用XML来描述,跨域 ...

  7. hadoop2.2.0安装需要注意的事情

    今天在安装hadoop2.2.0时遇到若干问题,解决这些问题有些心得,记录下来以备不时之需. 问题1.master和slave之间不能相互ssh免密码登陆. 问题表象此处略过,直接说解决办法: 1.查 ...

  8. Struts2-Value Stack浅析

    http://my.oschina.net/mlongbo/blog/88250 Value Stack的作用: 1.       可以作为一个数据中转站 2.       用于在前台-后台之间传递数 ...

  9. IBM db2安装好了以后,启动不了服务

    系统默认将Server服务禁用,开启这个服务就可以启动服务.

  10. J.U.C重入锁

    ReentrantLock重入锁 ReentrantLock是Java并发包中互斥锁,它有公平锁和非公平锁两种实现方式, 重入的意思就是,如果已经获得了锁,如果执行期间还需要获得这个锁的话,会直接获得 ...