插值问题
在应用领域中,由有限个已知数据点,构造一个解析表达式,由此计算数据点之间的函数值,称之为插值。
实例:海底探测问题
某公司用声纳对海底进行测试,在5×5海里的坐标点上测得海底深度的值,希望通过这些有限的数据了解更多处的海底情况。并绘出较细致的海底曲面图。
一、一元插值
一元插值是对一元数据点(xi,yi)进行插值。
1.  线性插值:由已知数据点连成一条折线,认为相临两个数据点之间的函数值就在这两点之间的连线上。一般来说,数据点数越多,线性插值就越精确。
调用格式:yi=interp1(x,y,xi,’linear’)  %线性插值
zi=interp1(x,y,xi,’spline’)  %三次样条插值
wi=interp1(x,y,xi,’cubic’)  %三次多项式插值
说明:yi、zi、wi为对应xi的不同类型的插值。x、y为已知数据点。
例1:已知数据:
x 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
y .3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2
求当xi=0.25时的yi的值。
程序:
x=0:.1:1;
y=[.3 .5 1 1.4 1.6 1 .6 .4 .8 1.5 2];
yi0=interp1(x,y,0.025,'linear')
xi=0:.02:1;
yi=interp1(x,y,xi,'linear');
zi=interp1(x,y,xi,'spline');
wi=interp1(x,y,xi,'cubic');
plot(x,y,'o',xi,yi,'r+',xi,zi,'g*',xi,wi,'k.-')
legend('原始点','线性点','三次样条','三次多项式')
结果:yi0 =  0.3500

要得到给定的几个点的对应函数值,可用:
xi =[ 0.2500  0.3500  0.4500]
yi=interp1(x,y,xi,'spline')
结果:
yi =1.2088  1.5802  1.3454
(二) 二元插值
二元插值与一元插值的基本思想一致,对原始数据点(x,y,z)构造见世面函数求出插值点数据(xi,yi,zi)。
一、单调节点插值函数,即x,y向量是单调的。
调用格式1:zi=interp2(x,y,z,xi,yi,’linear’)
‘liner’ 是双线性插值 (缺省)
调用格式2:zi=interp2(x,y,z,xi,yi,’nearest’)
’nearest’ 是最近邻域插值
调用格式3:zi=interp2(x,y,z,xi,yi,’spline’)
‘spline’是三次样条插值
说明:这里x和y是两个独立的向量,它们必须是单调的。z是矩阵,是由x和y确定的点上的值。z和x,y之间的关系是z(i,:)=f(x,y(i)) z(:,j)=f(x(j),y) 即:当x变化时,z的第i行与y的第i个元素相关,当y变化时z的第j列与x的第j个元素相关。如果没有对x,y赋值,则默认x=1:n, y=1:m。n和m分别是矩阵z的行数和列数。
例2:已知某处山区地形选点测量坐标数据为:
x=0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5
y=0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6
海拔高度数据为:
z=89 90 87 85 92 91 96 93 90 87 82
   92 96 98 99 95 91 89 86 84 82 84
   96 98 95 92 90 88 85 84 83 81 85
   80 81 82 89 95 96 93 92 89 86 86
   82 85 87 98 99 96 97 88 85 82 83
   82 85 89 94 95 93 92 91 86 84 88
   88 92 93 94 95 89 87 86 83 81 92
   92 96 97 98 96 93 95 84 82 81 84
   85 85 81 82 80 80 81 85 90 93 95
   84 86 81 98 99 98 97 96 95 84 87
   80 81 85 82 83 84 87 90 95 86 88
   80 82 81 84 85 86 83 82 81 80 82
   87 88 89 98 99 97 96 98 94 92 87
其地貌图为:

对数据插值加密形成地貌图。
程序:
x=0:.5:5;
y=0:.5:6;
z=[89 90 87 85 92 91 96 93 90 87 82
   92 96 98 99 95 91 89 86 84 82 84
   96 98 95 92 90 88 85 84 83 81 85
   80 81 82 89 95 96 93 92 89 86 86
   82 85 87 98 99 96 97 88 85 82 83
   82 85 89 94 95 93 92 91 86 84 88
   88 92 93 94 95 89 87 86 83 81 92
   92 96 97 98 96 93 95 84 82 81 84
   85 85 81 82 80 80 81 85 90 93 95
   84 86 81 98 99 98 97 96 95 84 87
   80 81 85 82 83 84 87 90 95 86 88
   80 82 81 84 85 86 83 82 81 80 82
   87 88 89 98 99 97 96 98 94 92 87];
mesh(x,y,z)  %绘原始数据图
xi=linspace(0,5,50);  %加密横坐标数据到50个
yi=linspace(0,6,80);  %加密纵坐标数据到60个
[xii,yii]=meshgrid(xi,yi);  %生成网格数据
zii=interp2(x,y,z,xii,yii,'cubic');  %插值
mesh(xii,yii,zii)  %加密后的地貌图
hold on     % 保持图形
[xx,yy]=meshgrid(x,y);  %生成网格数据
plot3(xx,yy,z+0.1,'ob')  %原始数据用‘O’绘出

2、二元非等距插值
调用格式:zi=griddata(x,y,z,xi,yi,’指定插值方法’)
插值方法有: linear          % 线性插值   (默认)
             bilinear     % 双线性插值
             cubic        % 三次插值
             bicubic      % 双三次插值
             nearest      % 最近邻域插值
例:用随机数据生成地貌图再进行插值
程序:
x=rand(100,1)*4-2;
y=rand(100,1)*4-2;
z=x.*exp(-x.^2-y.^2);
ti=-2:.25:2;
[xi,yi]=meshgrid(ti,ti); % 加密数据
zi=griddata(x,y,z,xi,yi);% 线性插值
mesh(xi,yi,zi)
hold on
plot3(x,y,z,'o')

拟合

简单多项式拟合

x=[0,1,2,3,4,5,7,8,9,10]

y=[0.3 ,0.5, 1, 1.4, 1.6, 1.6, 1.4, 1.8, 1.5, 2];

aa=polyfit(x,y,2);%2的位置表示函数的最高系数,aa是函数方程

a=aa(1)%第一个参数

b=aa(2)%第二个参数

c=aa(3)%第三个参数

y=polyval(aa,x);%根据函数方程获取的到y值

plot(x,y,'r');%r获取的是直线,k+获取的是点,应该使用拟合后的直线画图

MATLAB实现插值和拟合的更多相关文章

  1. Matlab随笔之插值与拟合(上)

    原文:Matlab随笔之插值与拟合(上) 1.拉格朗日插值 新建如下函数: function y=lagrange(x0,y0,x) %拉格朗日插值函数 %n 个节点数据以数组 x0, y0 输入(注 ...

  2. Matlab随笔之插值与拟合(下)

    原文:Matlab随笔之插值与拟合(下) 1.二维插值之插值节点为网格节点 已知m x n个节点:(xi,yj,zij)(i=1…m,j=1…n),且xi,yi递增.求(x,y)处的插值z. Matl ...

  3. matlab——插值与拟合

    @ 目录 前言 一.拟合 1.定义 2.三种判别准则 3.最小二乘法 (1)一般形式 (2)常用函数 (3)matlab实现 二.插值 1.定义 2.方法 (1)分段线性插值 (2)拉格朗日插值多项式 ...

  4. matlab学习——05插值和拟合(黄河小浪底调水调沙问题)

    05插值和拟合 黄河小浪底调水调沙问题 data3.txt 1800 1900 2100 2200 2300 2400 2500 2600 2650 2700 2720 2650 32 60 75 8 ...

  5. matlab学习——05插值和拟合(一维二维插值,拟合)

    05插值和拟合 1.一维插值 (1) 机床加工零件,试用分段线性和三次样条两种插值方法计算.并求x=0处的曲线斜率和13<=x<=15范围内y的最小值. x0=[0 3 5 7 9 11 ...

  6. 基于MATLAB的多项式数据拟合方法研究-毕业论文

    摘要:本论文先介绍了多项式数据拟合的相关背景,以及对整个课题做了一个完整的认识.接下来对拟合模型,多项式数学原理进行了详细的讲解,通过对文献的阅读以及自己的知识积累对原理有了一个系统的认识.介绍多项式 ...

  7. MATLAB之数据处理+公式拟合

    MATLAB之数据处理+公式拟合 前言:由试验得到一组数据,对该组数据进行处理,作图分析,分析各变量的关系,期望得到拟合公式. 试验数据背景 本次试验有三个自变量:V.M.G,因变量为F,每组试验重复 ...

  8. Python SciPy库——插值与拟合

    插值与拟合 原文链接:https://zhuanlan.zhihu.com/p/28149195 1.最小二乘拟合 实例1 # -*- coding: utf-8 -*- import numpy a ...

  9. MATLAB用“fitgmdist”函数拟合高斯混合模型(一维数据)

    MATLAB用“fitgmdist”函数拟合高斯混合模型(一维数据) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 在MATLAB中“fitgmdis ...

随机推荐

  1. mvc购物车项目(2)

    为了避免数据冗余,我们可以把共同的信息,抽出建立一个单独的表,把不是共有的信息,建立一张单独表. 订单表分为两个表 create table orders( id number primary key ...

  2. 列存储压缩技巧,除公共除数或者同时减去最小数,字符串压缩的话,直接去重后用数字ID压缩

    Column-store compression At a high level, doc values are essentially a serialized column-store. As w ...

  3. npm-install once

    Once 是我最习惯的模块,它展示了几乎所有的我书写的通过issac Schlueter创建的应用. 原理很简单,Once使用各类一个函数且返回了一个函数,你可以调用这个函数,但是只能调用一次.如果你 ...

  4. Git之Eclipse提交项目到Github并实现多人协作

    一.Eclipece提交项目到Github 见  eclipse提交项目到github 二.利用github组织实现多人协作 1.新建组织: New organization

  5. hdu-5867 Water problem(水题)

    题目链接: Water problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  6. C++ vector容器删除操作

    1.vector::pop_back() 删除vector的最后一个元素,vector的大小减一,删了的元素被销毁. 2.vector::erase() iterator erase (iterato ...

  7. linux命令学习笔记(60):scp命令

    scp是secure copy的简写,用于在Linux下进行远程拷贝文件的命令,和它类似的命令有cp,不过cp只是在本机进行 拷贝不能跨服务器,而且scp传输是加密的.可能会稍微影响一下速度.当你服务 ...

  8. JavaWEB - JSP 指令

  9. 服务注册选型比较:Consul vs Zookeeper vs Etcd vs Eureka

    zookeeper基于paxos的化简版zab,etcd基于raft算法.consul也是基于raft算法.etcd和consul作为后起之秀,并没有因为已经有了zookeeper而放弃自己,而是采用 ...

  10. 查找图像中椭圆轮廓的快速随机hough变换

    查找图像中椭圆轮廓的快速随机hough变换 图像中椭圆轮廓的查找在视频监控等领域有着广泛的应用,经典hough变换给我们提供了一种查找各种图形轮廓的方法,特别是在直线查找方面具有非常高的精确度.但是由 ...