1025: [SCOI2009]游戏
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 2727 Solved: 1794
[Submit][Status][Discuss]
Description
windy学会了一种游戏。对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应。最开始windy把数字按
顺序1,2,3,……,N写一排在纸上。然后再在这一排下面写上它们对应的数字。然后又在新的一排下面写上它们
对应的数字。如此反复,直到序列再次变为1,2,3,……,N。
如: 1 2 3 4 5 6 对应的关系为 1->2 2->3 3->1 4->5 5->4 6->6
windy的操作如下
1 2 3 4 5 6
2 3 1 5 4 6
3 1 2 4 5 6
1 2 3 5 4 6
2 3 1 4 5 6
3 1 2 5 4 6
1 2 3 4 5 6
这时,我们就有若干排1到N的排列,上例中有7排。现在windy想知道,对于所有可能的对应关系,有多少种可
能的排数。
Input
包含一个整数N,1 <= N <= 1000
Output
包含一个整数,可能的排数。
Sample Input
3
【输入样例二】
10
Sample Output
3
【输出样例二】
16
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std; #define LL long long const int MAXN=;
int cnt=,prime[MAXN];
int n;
LL ans,f[][];
void Prime(int x)
{
bool mark[MAXN];
for(int i=;i<=x;i++)
{
if(!mark[i]) prime[++cnt]=i;
for(int j=;j<=cnt&&prime[j]*i<=x;j++)
{
mark[prime[j]*i]=;
if(i%prime[j]==) break;
}
}
} int main()
{
scanf("%d",&n);
Prime(n);
f[][]=;
for(int i=;i<=cnt;i++)
for(int j=;j<=n;j++)
{
f[i][j]+=f[i-][j];
for(int k=prime[i];k<=j;k*=prime[i])
f[i][j]+=f[i-][j-k];
}
for(int i=;i<=n;i++)
ans+=f[cnt][i];
cout<<ans<<endl;
return ;
}
1025: [SCOI2009]游戏的更多相关文章
- BZOJ 1025 [SCOI2009]游戏
1025: [SCOI2009]游戏 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1533 Solved: 964[Submit][Status][ ...
- BZOJ 1025: [SCOI2009]游戏( 背包dp )
显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...
- 【BZOJ】1025: [SCOI2009]游戏(置换群+dp+特殊的技巧+lcm)
http://www.lydsy.com/JudgeOnline/problem.php?id=1025 首先根据置换群可得 $$排数=lcm\{A_i, A_i表示循环节长度\}, \sum_{i= ...
- bzoj 1025 [SCOI2009]游戏(置换群,DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] 给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种. [ ...
- 1025: [SCOI2009]游戏 - BZOJ
Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...
- [BZOJ 1025] [SCOI2009] 游戏 【DP】
题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...
- [bzoj 1025][SCOI2009]游戏(DP)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种 ...
- BZOJ 1025 SCOI2009 游戏 动态规划
标题效果:特定n.行定义一个替代品1~n这种更换周期发生后,T次要(T>0)返回到原来的顺序 找到行的所有可能的数 循环置换分解成若干个,然后行位移数是这些周期的长度的最小公倍数 因此,对于一些 ...
- BZOJ 1025: [SCOI2009]游戏 [置换群 DP]
传送门 题意:求$n$个数组成的排列变为升序有多少种不同的步数 步数就是循环长度的$lcm$..... 那么就是求$n$划分成一些数几种不同的$lcm$咯 然后我太弱了这种$DP$都想不出来.... ...
随机推荐
- POJ1047 Round and Round We Go
题目来源:http://poj.org/problem?id=1047 题目大意: 有一些整数具有这样的性质:它的位数为n,把它和1到n的任意一个整数相乘结果的数字会是原数字的一个“环”.说起来比较抽 ...
- angular中[hidden]="expression"注意事项
[hidden]="expression",右侧的表达式尽量使用布尔值:虽然比较运算符也可以达到效果,但时常会出现一些莫名其妙的错误.
- 转 基于MySQL MEB的备份恢复
几种备份方式的介绍 mysqlbackup是一个热备份工具.也就是说它不像mysqldump那样给表上一个全局锁,由于mysqldump上了这个锁,所以就造成客户端只能对 数据库进行读操作不能写,这也 ...
- 跨域和jsonp的了解和学习
一.为什么会有跨域问题呢 因为有浏览器的同源策略. 同源:如果两个页面的协议,端口(如果有指定)和主机都相同,则两个页面具有相同的源.我们也可以把它称为“协议/主机/端口 tuple”,或简单地叫做“ ...
- (转)用户管理 之 Linux 用户(user)和用户组(group)管理概述
用户管理 之 Linux 用户(user)和用户组(group)管理概述 原文:http://www.cnblogs.com/licheng/p/6103992.html 一.理解Linux的单用户 ...
- 字符串实现Base64加密/解密
有时候需要对字符串进行加密,不以明文显示,可以使用此方法,比如对URL的参数加密 using System; using System.Collections.Generic; using Syste ...
- 操作文件方法简单总结(File,Directory,StreamReader,StreamWrite )(转载)
本文转自http://www.cnblogs.com/zery/p/3315889.html 对于文件夹,文档的操作一直处于一知半解状态,有时间闲下来了,好好练习了一把,对文档,文件的操作有了一个基本 ...
- 从零开始的全栈工程师——js篇2.9(this详解)
this 一.this是js的一个关键字 指定一个对象然后去替代他 只研究函数内的this 分两种 函数内的this和函数外的this1)函数内的this指向行为发生的主体2)函数外的this都 ...
- Centos6.5安装部署nodejs
使用编译好的包安装 一.在官网下载包 https://nodejs.org/en/download/ 二.把包传送到服务器,进入到包目录并解压 tar axvf node-v6.9.5-linux-x ...
- 数据类型 -- uint32_t 类型
整型的每一种都有无符号(unsigned)和有符号(signed)两种类型(float和double总是带符号的),在默认情况下声明的整型变量都是有符号的类型(char有点特别),如果需声明无符号类型 ...