UOJ#122【NOI2013】树的计数
【NOI2013】树的计数
按BFS序来,如果$B_i$与$B_{i-1}$必须在同一层,那么贡献为0,必须在不同层那么贡献为1,都可以贡献为0.5。
因为$B_i$与$B_{i-1}$相邻,所以对方案数的改变最多+1.
- 必须在不同层,即$D(B_{i-1})>D(B_i)$
- 都可以,$B_i$能往下移一层,不改变BFS序以及DFS序:
- 作为兄弟,父亲必须一样(即$D(B_{i-1})==D(B_i)-1$),不然会改变DFS序.
- 作为儿子,该层当前不能有其他点。等价于$\{D(B_{1..i-1})\}=B\{[1...L]∪[R..N]\}$,意味着一部分在x属于前面,后面是深度都小于x的。中间的其实就是x的子树
剩下代码就很简单了。
#include<cstdio> typedef long long ll;
template<class T>
inline void read(T&x)
{
x=;bool f=;char c=getchar();
while((c<''||c>'')&&c!='-')c=getchar(); if(c=='-')f=,c=getchar();
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
x=f?-x:x;
}
const int MAXN();
int B[MAXN],D[MAXN],n,D_num[MAXN],l,r,B_num[MAXN];
bool bf[MAXN];double Ans;
int main()
{
freopen("C.in","r",stdin);
freopen("C.out","w",stdout);
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&D[i]);
for(int i=;i<=n;i++)scanf("%d",&B[i]),B_num[B[i]]=i;
for(int i=;i<=n;i++)D[i]=B_num[D[i]],D_num[D[i]]=i;
Ans=;bf[D_num[]]=bf[D_num[]]==;l=;r=n+;
for(int i=;i<=n;i++)
{
if(D_num[i-]>D_num[i])Ans+=;
else
if(D_num[i-]==D_num[i]-&&n-r++l==i-)
{
Ans+=0.5;
}
bf[D_num[i]]=;
while(bf[l+])l++;
while(bf[r-])r--;
}
printf("%.3lf",Ans);
return ;
}
UOJ#122【NOI2013】树的计数的更多相关文章
- [UOJ#122][NOI2013]树的计数
[UOJ#122][NOI2013]树的计数 试题描述 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的 DFS 序以及 BFS 序.两棵不同的树的 DFS 序 ...
- 【BZOJ3244】【UOJ#122】【NOI2013]树的计数
NOI都是酱的题怎么玩啊,哇.jpg 原题: 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的 ...
- 【uoj122】 NOI2013—树的计数
http://uoj.ac/problem/122 (题目链接) 题意 给出一棵树的dfs序和bfs序,保证一定可以构成一棵树.问构成的树的期望深度. Solution 这是一个悲伤的故事,我YY的东 ...
- NOI2013 树的计数
题目:http://uoj.ac/problem/122 85%做法: 动态规划. 首先重编号,BFS序变成1...n,然后DFS序相应重编号. 记pos[i]为i号点在DFS中的位置,即pos[d[ ...
- 3244: [Noi2013]树的计数 - BZOJ
Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...
- bzoj 3244: [Noi2013]树的计数
Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...
- BZOJ3244 NOI2013树的计数(概率期望)
容易发现的一点是如果确定了每一层有哪些点,树的形态就确定了.问题变为划分bfs序. 考虑怎样划分是合法的.同一层的点在bfs序中出现顺序与dfs序中相同.对于dfs序中相邻两点依次设为x和y,y至多在 ...
- [BZOJ3244][NOI2013]树的计数
这题大家为什么都写O(NlogN)的算法呢?…… 让本蒟蒻来写一个O(N)的吧…… 首先还是对BFS序和DFS序重编号,记标好的DFS序为d[1..n].令pos[x]为x在d[]中出现的位置,即po ...
- [bzoj3244][noi2013]树的计数 题解
UPD: 那位神牛的题解更新了,在这里. ------------------------------------------------------------------------------- ...
- BZOJ3244/UOJ122 [Noi2013]树的计数
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
随机推荐
- C#中的运算符和表达式
说起C#运算符和表达式,小伙伴们肯定以为很简单,其实要用好表达式,不是一件容易的事.一个好的表达式可以让你做事半功倍的效果,比如三元表达式,可以让你少写N多个if和case语句. 表达式 由 操作数( ...
- bootstrap初学者模板
<!doctype html> <html lang="en"> <head> <!-- Required meta tags --> ...
- struts2学习笔记——常见报错及解决方法汇总(持续更新)
操作环境:(1)Tomcat 7.0.72.0 (2)OS Name: Windows 7 (3)JVM Version: 1.8.0_25-b18 (4)eclipse Version: Ke ...
- 括号序列(区间dp)
括号序列(区间dp) 输入一个长度不超过100的,由"(",")","[",")"组成的序列,请添加尽量少的括号,得到一 ...
- 开发外包注意事项二——iOS APP的开发
目前我的方式是按时间算. 首先这得建立在双方的信任基础上. 以我做过的Case为例: 首先会和客户一起评估需求: 1. 哪些功能是最为重要的 2. 哪些功能是可以删除的 3. 用什么策略保证APP的出 ...
- 什么时候要重写equals
什么时候要重写equals 当对象需要根据值去比较它们是否相等时,需要我们重写equals,而它的hashCode也同时需要被重要,一般来说就是对类里所有成员变更求hashCode. 没有重写equa ...
- 解决运行Robot Framework报‘’ascii’错误
在Python27\Lib\site-packages中新建‘sitecustomize.py’,内容如下: #coding=utf8import sysreload(sys)sys.setdefau ...
- Git练习1
- jdk tomcat
vi /etc/profile export JAVA_HOME=/usr/java/jdk1.8.0_121export JRE_HOME=/usr/java/jdk1.8.0_121/jreexp ...
- Unittest组织用例的姿势
本文我们将会讲解Python Unittest 里组织用例的5种姿势. 环境准备: python 3.0以上 python requests库 小编的环境: python 3.6.4 一.TestLo ...