CF431C k-Tree dp
Quite recently a creative student Lesha had a lecture on trees. After the lecture Lesha was inspired and came up with the tree of his own which he called a k-tree.
A k-tree is an infinite rooted tree where:
- each vertex has exactly k children;
- each edge has some weight;
- if we look at the edges that goes from some vertex to its children (exactly k edges), then their weights will equal 1, 2, 3, ..., k.
The picture below shows a part of a 3-tree.
As soon as Dima, a good friend of Lesha, found out about the tree, he immediately wondered: "How many paths of total weight n (the sum of all weights of the edges in the path) are there, starting from the root of a k-tree and also containing at least one edge of weight at least d?".
Help Dima find an answer to his question. As the number of ways can be rather large, print it modulo 1000000007 (109 + 7).
A single line contains three space-separated integers: n, k and d (1 ≤ n, k ≤ 100; 1 ≤ d ≤ k).
Print a single integer — the answer to the problem modulo 1000000007 (109 + 7).
3 3 2
3
3 3 3
1
4 3 2
6
4 5 2
7
题目描述
最近有一个富有创造力的学生Lesha听了一个关于树的讲座。在听完讲座之后,Lesha受到了启发,并且他有一个关于k-tree(k叉树)的想法。 k-tree都是无根树,并且满足:
- 每一个非叶子节点都有k个孩子节点;
- 每一条边都有一个边权;
- 每一个非叶子节点指向其k个孩子节点的k条边的权值分别为1,2,3,...,k。
当Lesha的好朋友Dima看到这种树时,Dima马上想到了一个问题:“有多少条从k-tree的根节点出发的路上的边权之和等于n,并且经过的这些边中至少有一条边的边权大于等于d呢?” 现在你需要帮助Dima解决这个问题。考虑到路径总数可能会非常大,所以只需输出路径总数 mod 1000000007 即可。(1000000007=10^9+7)
考虑dp[ i ][ 1/0 ]表示总和为i时,最大值是否>=d的方案数;
然后枚举中间状态转移;
注意long long ;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream> //#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 1000005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++) inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
}
/*
int n, m;
int st, ed;
struct node {
int u, v, nxt, w;
}edge[maxn<<1]; int head[maxn], cnt; void addedge(int u, int v, int w) {
edge[cnt].u = u; edge[cnt].v = v; edge[cnt].w = w;
edge[cnt].nxt = head[u]; head[u] = cnt++;
} int rk[maxn]; int bfs() {
queue<int>q;
ms(rk);
rk[st] = 1; q.push(st);
while (!q.empty()) {
int tmp = q.front(); q.pop();
for (int i = head[tmp]; i != -1; i = edge[i].nxt) {
int to = edge[i].v;
if (rk[to] || edge[i].w <= 0)continue;
rk[to] = rk[tmp] + 1; q.push(to);
}
}
return rk[ed];
}
int dfs(int u, int flow) {
if (u == ed)return flow;
int add = 0;
for (int i = head[u]; i != -1 && add < flow; i = edge[i].nxt) {
int v = edge[i].v;
if (rk[v] != rk[u] + 1 || !edge[i].w)continue;
int tmpadd = dfs(v, min(edge[i].w, flow - add));
if (!tmpadd) { rk[v] = -1; continue; }
edge[i].w -= tmpadd; edge[i ^ 1].w += tmpadd; add += tmpadd;
}
return add;
}
ll ans;
void dinic() {
while (bfs())ans += dfs(st, inf);
}
*/ int n, k, d;
ll dp[200][2]; int main()
{
//ios::sync_with_stdio(0);
//memset(head, -1, sizeof(head));
while (cin >> n >> k >> d) {
ms(dp); dp[0][0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= k; j++) {
if (i >= j) {
if (j < d) {
dp[i][0] = (dp[i][0] + dp[i - j][0]) % mod;
dp[i][1] = (dp[i][1] + dp[i - j][1]) % mod;
}
else {
dp[i][1] = (dp[i][1] + dp[i - j][0] + dp[i - j][1]) % mod;
}
}
}
}
cout << (ll)dp[n][1] << endl;
}
return 0;
}
CF431C k-Tree dp的更多相关文章
- DP Intro - Tree DP Examples
因为上次比赛sb地把一道树形dp当费用流做了,受了点刺激,用一天时间稍微搞一下树形DP,今后再好好搞一下) 基于背包原理的树形DP poj 1947 Rebuilding Roads 题意:给你一棵树 ...
- HDU 4359——Easy Tree DP?——————【dp+组合计数】
Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- TYOI Day1 travel:Tree dp【处理重复走边】
题意: 给你一棵树,n个节点,每条边有长度. 然后有q组询问(u,k),每次问你:从节点u出发,走到某个节点的距离mod k的最大值. 题解: 对于无根树上的dp,一般都是先转成以1为根的有根树,然后 ...
- HDU 4359 Easy Tree DP?
Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- hdu 4050 2011北京赛区网络赛K 概率dp ***
题目:给出1-n连续的方格,从0开始,每一个格子有4个状态,左右脚交替,向右跳,而且每一步的步长必须在给定的区间之内.当跳出n个格子或者没有格子可以跳的时候就结束了,求出游戏的期望步数 0:表示不能到 ...
- HDU 5629 Clarke and tree dp+prufer序列
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=562 题意: 求给每个节点的度数允许的最大值,让你求k个节点能组成的不同的生成树个数. 题解: 对于n ...
- HDU5629:Clarke and tree(DP,Prufer)
Description Input Output Sample Input Sample Output Solution 题意:给你$n$个点,还有每个点的度数,问你任选$i(1\leq i \leq ...
- 96. Unique Binary Search Trees (Tree; DP)
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- bzoj 1017 tree dp
这道题几经波折啊. 最开始和vfleaking一样,把题意理解错了,认为一个装备可能被多个装备依赖,然后想不出来,去看题解. 发现自己理解错了题意,自己想想,其实也不难想到dp[i][j][k]表示“ ...
- HDU5293(SummerTrainingDay13-B Tree DP + 树状数组 + dfs序)
Tree chain problem Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
随机推荐
- 2016.2.13 (年初六) oracle两张表update方法
A表customers和B表tmp_cust_city有3个相同字段, customer_id,city_name,customer_type 现要根据b表更新a表 更新一个字段情况: update ...
- 简单的windows作业管理(自己也没弄透彻)
先把代码贴出来,以后有时间再研究!简单的说,作业就相当于沙箱,可以使程序在一定范围内活动. #include "stdafx.h"#include "windows.h& ...
- node install error
错误:Unexpected end of JSON input while parsing near.... 解决办法: npm cache clean --force
- 类型:linux;问题:linux命令;结果:Linux常用命令大全
Linux常用命令大全 QQ空间新浪微博腾讯微博人人网豆瓣网百度空间百度搜藏开心网复制更多1997 系统信息 arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) una ...
- Python 学习之---文件目录处理
前言:有关文件夹与文件的查找,删除等功能 在 os 模块中实现.使用时需先导入这个模块, 导入的方法是:import os 一.取得当前目录 s = os.getcwd() s 中保存的是当前目录 ...
- Github修改项目显示的语言类型
//仓库的根目录下创建 .gitattributes 文件,添加以下代码: *.js linguist-language=java *.css linguist-language=java *.htm ...
- python的print字符串的输出
字符串的输出使用print语句,在每个语句的输出的时候我们使用' '和" "来包含字符串比如: 如果有多个字符串的话呢我们需要用”,“来进行连接: 我们不仅可以使用字符来进行输出时 ...
- JavaScript Array.map
Array.prototype.map() History Edit This article is in need of a technical review. Table of Contents ...
- 如何判断一个字符串是否是UTF8编码
UTF8是以8bits即1Bytes为编码的最基本单位,当然也可以有基于16bits和32bits的形式,分别称为UTF16和UTF32,但目前用得不多,而UTF8则被广泛应用在文件储存和网络传输中. ...
- HDU 4912 LCA + 贪心
题意及思路 说一下为什么按LCA深度从深到浅贪心是对的.我们可以直观感受一下,一条的路径会影响以这个lca为根的这颗树中的链,而深度越深,影响范围越小,所以先选影响范围小的路径. #include & ...